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Water distribution networks are considered as the most important entity in the urban

infrastructure system and need huge investment for construction. The inherent problem

associated with cost optimisation in the design of water distribution networks is due to the

nonlinear relationship between flow and head loss and availability of the discrete nature of pipe

sizes. In the last few decades, many researchers focused on several stochastic methods of

optimisation algorithms. The present paper is focused on the Differential Evolution algorithm

(henceforth referred to as DE) and utilises a similar concept as the genetic algorithm to achieve

a goal of optimisation of the specified objective function. A simulation–optimisation model is

developed in which the optimization is done by DE. Four well-known benchmark networks were

taken for application of the DE algorithm to optimise pipe size and rehabilitation of the water

distribution network. The findings of the present study reveal that DE is a good alternative to the

genetic algorithm and other heuristic approaches for optimal sizing of water distribution pipes.
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NOTATION

The following symbols are used in this paper.

XðGÞ
i;j jth component (diameter of jth link) of ith

candidate solution

XðGÞ
i ith candidate solution or individual in the Gth

generation

[D ] set of available pipe sizes

fðxðGÞ
i Þ cost of ith individual in Gth generation

xðLÞ
j lower limit of variable j

xðUÞ
j upper limit of variable j

A, B and C randomly selected solution vectors

CHW Hazen–Williams coefficient

Cr user-defined crossover constant

Di diameter of the pipe i

F user-defined weighting factor (mutation

constant)

Gmax user-defined maximum number of generations

Hact actual pressure head

Hallow allowable pressure head

hfi head loss due to friction in pipe i

Hmin minimum required pressure head

Hn pressure head at node n

in, n set of pipes entering to the node n

Li length of the pipe i

NL loop set

NN node set

NP number of pipes

npop population size

nvar number of variables

out, n set of pipes emerging from node n

P (G) population in Gth generation

Qi flow in pipe i

randij uniformly distributed random value within the

range of (0.0 to 1.0)

WDV weighted differential vector

a conversion factor

DH difference in nodal heads between ends

doi: 10.2166/hydro.2010.014

66 Q IWA Publishing 2010 Journal of Hydroinformatics | 12.1 | 2010



INTRODUCTION

The water distribution system is one of the major require-

ments in urban and regional economic development. For

any agency dealing with the design of the water distribution

network, an economic design will be an objective. The funds

needed for the construction, maintenance and operation of

these systems require the achievement of a good compro-

mise between technical and economic aspects. Several

methods are available to design a water distribution

network in which rule of thumb and trial and error are

the most popular methods. With the development of high

speed digital computers and improved optimisation

techniques, the design of water distribution networks was

attempted since the 1970s. The complexity of the problem is

due to the nonlinear relationship between flow and head

loss, the presence of discrete decision variables such as

pipe diameter, cost functions for the materials, labour,

geographical layout, multiple demand loading patterns,

uncertainty in demands, and location of tanks, pumping

stations, booster pumps, valves, etc. Numerous works were

reported in the literature for optimal design and some of

them considered certain reliability aspects too. In optimis-

ation models, continuous diameters (Pitchai 1966; Jacoby

1968; Varma et al. 1997) and split pipes (Alperovits &

Shamir 1977; Quindry et al. 1979; Goulter et al. 1986;

Fujiwara et al. 1987; Kessler & Shamir 1989; Bhave & Sonak

1992) were more prominently used. Conversion of continu-

ous diameter to the nearest commercial size after optimisa-

tion does not guarantee the true optimal solution. Also use

of a split pipe length with different diameters for a link is

very uncommon in practice. The last two decades witnessed

a growing interest in adapting evolution-based algorithms,

which overcome such a problem. A straightforward

approach to the solution of such a problem would be the

enumeration of all possible solutions and choosing the best

one. Unfortunately, in most cases, such an approach

becomes rapidly infeasible because of the exponential

growth of possible solutions with the increase in the

number of variables. Moreover the design of a water

distribution system is a combinatorial problem, which

generally possesses greater numbers of local optima.

Hence, deep insight into the problem structure and

understanding of specific characteristics of the problem

permits the heuristic and meta-heuristic algorithm to

explore the solution in less computational time, but

unfortunately resulting in an enormous computational

burden due to the relatively large number of hydraulic

simulations. Several attempts were made by researchers to

reduce the number of hydraulic simulations and for easy

handling of discrete variables. Application of the genetic

algorithm (Dandy et al. 1996; Savic & Walters 1997;

Vairavamoorthy & Ali 2000, 2005), the modified genetic

algorithm (Montesinos et al. 1999; Neelakantan & Suribabu

2005; Kadu et al. 2008), the simulated annealing algorithm

(Cunha & Sousa 1999), the shuffled leapfrog algorithm

Figure 1 | Steps in differential evolution algorithm.
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(Eusuff & Lansey 2003), ant colony optimization (Maier

et al. 2003; Zecchin et al. 2007; Ostfeld & Tubaltzev 2008),

novel cellular automata (Keedwell & Khu 2006) and the

particle swarm algorithm (Suribabu & Neelakantan

2006a,b) for optimal design of water distribution systems

are some of them. The present paper is focused on

implementation of the DE algorithm for optimal design

and rehabilitation of water distribution networks. Use of

addition, subtraction and component swapping are the

distinguishing features of DE that successively update

the population of solution vectors, until the population

hopefully converges to an optimal solution. In the recent

past, DEA was used to optimise the water pumping system

(Babu & Angira 2003), multi-objective reservoir system

Figure 2 | Computational module for differential evolution algorithm.
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operation (Janga Reddy & Nagesh Kumar 2007) and

irrigation system planning (Vasan & Raju 2007).

OPTIMISATION MODEL

The problem of optimal design of the water distribution

network usually has an objective of minimising the total

capital cost. For a given layout, details like demand and

elevation of the node, tank size and its bottom level are

assumed as known variables. The objective is to find a

combination of different sizes of pipe that gives the

minimum cost subjected to the following constraints.

Continuity of flow in each node must be maintained in

the network. The continuity principle states that the

quantity of flow into the node must be equal to the quantity

of flow leaving that node. The quantity of flow leaving the

node includes the external demand and flow passes out

through other pipes emerging from the node. Mathemat-

ically it is expressed as

i[in;n

X
Qi ¼

j[out;n

X
Qj þ NDn ;n [ NN ð1Þ

where Q ¼ pipe flow; NDn ¼ demand at node n;

in, n ¼ set of pipes entering to the node n; out, n ¼ set

of pipes emerging from node n and NN ¼ node set.

The total head loss around the closed path (loop)

should be equal to zero or the head loss along a path

between the two fixed head nodes should be equal to the

difference in elevation:

i[loop p

X
hfi ¼ DH; ;p [ NL ð2Þ

where hfi ¼ head loss due to friction in pipe i; NL ¼ loop

set; DH ¼ difference between nodal heads at both ends and

DH ¼ 0, if the path is closed.

The Hazen–Williams head loss equation for pipe i of

connecting nodes j and k is

Hj 2 Hk ¼ hfi ¼
aLiQijQij

0:852

C1:852
HW;iD

4:87
i

;j [ NP ð3Þ

where NP ¼ number of pipes; CHW ¼ Hazen–Williams

coefficient; Di ¼ diameter of the pipe i; Li ¼ length of

the pipe i and a ¼ conversion factor which depend

on the units used for calculation (in this, a ¼ 10.667).

The pressure head in all nodes should be greater than

the prescribed minimum pressure head:

Hn $ Hmin ð4Þ

Figure 3 | Layout of example network 1 (two-loop network).

Table 1 | Pipe cost data for example 1 (two-loop network)

Diameter (in) Diameter (mm) Cost (units)

1 25.4 2

2 50.8 5

3 76.2 8

4 101.6 11

6 152.4 16

8 203.2 23

10 254.0 32

12 304.8 50

14 355.6 60

16 406.4 90

18 457.2 130

20 508.0 170

22 558.8 300

24 609.6 550
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where Hn ¼ pressure head at node n and Hmin

¼ minimum required pressure head.

The diameter of the pipes should be available from a

set of commercial sizes:

Di ¼ ½D�; ;i [ NP ð5Þ

DIFFERENTIAL EVOLUTION (DE) ALGORITHM

Storn & Price (1995) introduced the DEA, which basically

resembles the structure of an evolutionary algorithm

and differs in terms of the way in which mutation

and crossover operators are applied to generate new

candidate solutions from standard evolutionary algorithms.

Randomly selected candidate solutions (solution vectors)

from the population are allowed to undergo the subtraction,

addition and component swapping before reaching the next

generation. DE performs mutation before crossover and

mutation is treated as a constant, which acts as a weighting

factor for the differential vector. The differential vector is

obtained by finding the numerical difference between any

two randomly selected solution vectors from the population

or by taking the average of a number of differential vectors

created from various randomly selected pairs from the

population. This weighted difference vector is added with a

third randomly chosen solution vector, which in turn creates

Table 2 | Results of the trial runs for two-loop network

Trial run number Weighting factor

Crossover

probability

Number of times

the least cost

solution obtained

(out of 30 trials)

Average number of

function evaluation

in getting least

cost solution

1 0.8 0.5 14 5,564

2 0.8 0.4 20 4,350

3 0.7 0.5 10 4,328

4 0.6 0.5 14 3,378

5 0.6 0.4 15 4,005

6 0.7 0.4 9 5,051

7 0.8 0.3 12 5,116

8 0.7 0.3 7 5,214

9 0.9 0.6 8 5,172

10 0.9 0.4 11 5,323

Average no. of function evaluations for
the solution (419,000 units)

4,750

Table 3 | Solutions for two-loop network

Sl. no. Authors Technique used

Average number of

function evaluations

1 Savic & Walters (1997) Genetic algorithm 65,000

2 Cunha & Sousa (1999) Simulated annealing algorithm 25,000

3 Eusuff & Lansey (2003) Shuffled leapfrog algorithm 11,155

4 Liong & Atiquzzaman (2004) Shuffled complex algorithm 1,019

5 Neelakantan & Suribabu (2005) Modified genetic algorithm 2,440p

6 Suribabu & Neelakantan (2006a) Particle swarm optimization 5,138

7 Present work Differential evolution 4,750

pCorresponds to the minimum number of function evaluations.
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a new solution vector called a noisy vector. Now the

crossover operation is performed between the noisy vector

and target vector (from the population) to get a trial vector.

Finally, the trial vector is compared with its target vector

and the better one is passed to the next generation.

The above-mentioned process gets repeated until the

number of newly generated candidate solutions fills up

the next generation. Figure 1 shows the steps involved

in the differential evolution algorithm. It is to be noted

that the randomly selected vectors should be distinctive

from each other. It is interesting to note that DE does not

use any selection mechanism as in GA; instead the lowest

cost solution vector (in the case of the minimization

problem) either from the trial vector or its parent target

vector is allowed to advance to the next generation.

DE operates on a population P (G) of generation G

that contains npop candidate solutions (individuals).

The position matrix of the population of generation G can

be represented as

PðGÞ ¼ XG
i

xG
1;1; x

G
2;1; x

G
3;1;…… … ; xG

n pop;1

xG
1;2; x

G
2;2; x

G
3;2;…… … ; xG

n pop;2

xG
1;3; x

G
2;3; x

G
3;3;…… … ; xG

n pop;3

·

·

·

xG
1;n var; x

G
2;n var; x

G
3;n var;…… … ; xG

n pop;n var

2
666666666666666664

3
777777777777777775

ð6Þ

where XðGÞ
i is the ith candidate solution or individual in the

Gth generation, xðGÞ
i;j is the jth component (diameter of

the jth link) of the ith candidate solution, nvar denotes the

number of variables (in this case, the number of diameters

to be selected) and Gmax is the user-defined maximum

number of generations.

The initial population P (0) for the DE is created

arbitrarily:

Pð0Þ ¼ xð0Þ
i;j ¼ xðLÞ

j þ randi;j xðUÞ
j 2 xðLÞ

j

� �
i ¼ 1 to npop; j ¼ 1 to nvar

ð7Þ

where ‘randij’ denotes a uniformly distributed random value

within the range [0.0 to 1.0]. xðUÞ
j and xðLÞ

j are upper and

lower limits of variable j.

From the first generation onwards, the population (new

vectors) of the subsequent generation P (Gþ1) is generated

by the combination of vectors randomly chosen from the

current population by mutation. The noisy vector is then

mixed with the predetermined target vector.

The population of ‘trial’ vectors P (Gþ1) is generated as

follows (mutation and recombination):

xGþ1
i;j ¼

xðGÞ
C;j þ F £ xðGÞ

A;j 2 xðGÞ
B;j

� �
if randi;j # Cr; ;j ¼ Di

xðGÞ
i;j other wise

8><
>:

ð8Þ

where

D ¼ 1;…… … ;nparam;

A [ ½1;…… … ;npop�; B [ ½1;…… … ;npop�;

C [ ½1;…… … ;npop�; A – B – C – i;

Cr [ ½0 to 1�; F [ ½0 to 1�; rand [ ½0 to 1�:

The weighting factor F is a user-defined mutation

constant within the range [0 to 1]. Cr is a user-defined

Figure 4 | Evolution process for two-loop network.

Figure 5 | Layout of example network 2 (Hanoi network).
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crossover constant, which assists in the differential pertur-

bation to select the parameters either from the noisy vector

or target vector to get the trial vector. Finally, the trial

vector is carried to the next generation only if it yields a

reduction in the value of the objective function in the case

of the minimization problem. Otherwise the target vector

will be selected for the next generation.

The population of the next generation PðGþ1Þ is selected

as follows:

xGþ1
i;j ¼

xðGþ1Þ
i;j if fðxðGþ1Þ

i Þ # fðxðGÞ
i Þ

xðGÞ
i;j other wise

8><
>:

ð9Þ

where fðxðGÞ
i Þ represents the cost of the ith individual in the

Gth generation.

Figure 2 shows the computational modules of the

differential evolution algorithms applicable to the optimal

design of water distribution networks.

APPLICATION

In the present study, a combined simulation–optimisation

model is developed and used. The optimisation model is

an outer driven whereas the simulation is an inner driven

one. The computer programming code was written for DE

using Visual Basic and EPANET (Rossman 2000) is linked

via the EPANET Toolkit. The complete programme

performs a hydraulic network analysis at each function

evaluation to determine the pressure head at the nodes.

The algorithm is applied to four well-known networks.

A penalty value will be added to the solution vector that

violates pressure at the node and it will be taken as the

cost of the network forming links with maximum pipe size.

The implementation strategy of DE for optimal design of

the water distribution network is presented in Figure 2.

It can be seen from Figure 2 that all the initial solution

vectors consist of discrete pipe sizes. In the DE process,

these discrete sizes will be converted to continuous

Table 5 | Cost data for pipes for Hanoi network

Diameter (in) Diameter (mm) Cost (units)

12 304.8 45.73

16 406.4 70.40

20 508.0 98.38

24 609.6 129.333

30 762.0 180.8

40 1016.0 278.3

Table 4 | Node and link data for Hanoi network

Node no. Demand (m3/h) Link index Arc Length (m)

1 219,940 1 (1,2) 100

2 890 2 (2,3) 1,350

3 850 3 (3,4) 900

4 130 4 (4,5) 1,150

5 725 5 (5,6) 1,450

6 1,005 6 (6,7) 450

7 1,350 7 (7,8) 850

8 550 8 (8,9) 850

9 525 9 (9,10) 800

10 525 10 (10,11) 950

11 500 11 (11,12) 1,200

12 560 12 (12,13) 3,500

13 940 13 (10,14) 800

14 615 14 (14,15) 500

15 280 15 (15,16) 550

16 310 16 (16,17) 2,730

17 865 17 (17,18) 1,750

18 1,345 18 (18,19) 800

19 60 19 (19,3) 400

20 1,275 20 (3,20) 2,200

21 930 21 (20,21) 1,500

22 485 22 (21,22) 500

23 1,045 23 (20,23) 2,650

24 820 24 (23,24) 1,230

25 170 25 (24,25) 1,300

26 900 26 (25,26) 850

27 370 27 (26,27) 300

28 290 28 (27,16) 750

29 360 29 (23,28) 1,500

30 360 30 (28,29) 2,000

31 105 31 (29,30) 1,600

32 805 32 (30,31) 150

33 (31,32) 860

34 (32,25) 950

72 C. R. Suribabu | Differential evolution algorithm for optimal design of water distribution networks Journal of Hydroinformatics | 12.1 | 2010



diameter when it undergoes the mutation process. From

the initial population, two solution vectors are randomly

selected and the difference between each of the parameters

is determined. The weighted vector is obtained by

multiplying by the mutation constant and it is added to

the third randomly selected vector from the initial

population to get a noisy vector. Furthermore, a new

solution vector is obtained by performing crossover, which

basically selects the pipe diameter either from the noisy

vector or target vector, according to the selection

probability. The selection probability is randomly gener-

ated in order to compare with the crossover constant. If

it is less than or equal to the crossover constant, the

pipe diameter is selected from the noisy vector, otherwise

from the target vector. The overall cost of the new

solution (called a trial vector) is calculated after converting

the pipe diameters selected from the noisy vector to

the nearest commercial size. As this conversion of

continuous diameter to discrete diameter occurs within

the optimisation (i.e. before the selection of the vector

for the next generation), this does not affect the goal

of optimisation.

Example 1 (two-loop network)

The pipe network in this example (Figure 3) is a

hypothetical problem drawn from Alperovits & Shamir

(1977). The network consists of eight links, six demand

nodes and a reservoir. All the links of the network has a

length of 1,000 m each and the Hazen–Williams coefficient

is considered as 130 for all the links. The minimum pressure

head requirement for all the nodes is 30 m. Table 1 shows

the commercially available pipes and their cost per metre

length. Thirty trial runs are performed with different initial

random seeds, for each set of selected operator constants by

setting a population size as 20. The mutation constant is

varied from 0.6–0.9 in 0.1 increments and similarly the

crossover constant is varied from 0.3–0.5 in increments of

0.1. Ten different combinations of constants are considered

from the above range. The termination criterion for the

optimisation is arbitrarily set to 500 generations. As the

population size is set to twenty, each generation consists of

20 function evaluations. Table 2 provides the results of an

average of 30 trial runs for each combination of constants.

From the trials, the least cost of 419,000 units is found out

with an average probability of success of 40%, i.e. out of 300

trials, 120 times a least cost of 419,000 is obtained. The

same is reported in the literature too (Savic & Walters 1997;

Cunha & Sousa 1999; Eusuff & Lansey 2003; Liong &

Atiquzzaman 2004; Suribabu & Neelakantan 2006a,b).

The average number of function evaluations corresponding

to the least cost is determined as 4,750. In the evaluation

process, one of the trials having a weighting factor of 0.6

and crossover constant of 0.5 has provided an optimal

solution of 419,000 units at the expense of 1,320 function

evaluations. The optimal diameters for links 1–8 are found

Table 6 | Results of ten trial runs for Hanoi network

Trial run number Weighting factor Crossover probability

Number of times the least cost

solution obtained (out of 5 trials)

Average number of function evaluation in

getting least cost solution

1 0.8 0.5 5 50,840

2 0.8 0.4 4 60,075

3 0.7 0.5 5 33,400

4 0.7 0.4 5 62,460

5 0.6 0.5 3 32,800

6 0.6 0.4 3 46,700

7 0.9 0.5 5 48,260

8 0.9 0.4 4 43,400

9 0.8 0.3 2 64,300

10 0.9 0.6 5 45,000

Average no. of function evaluations for the solution (6,081,087 units) 48,724
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as 457.2, 254, 406.4, 101.6, 406.4, 254, 254 and 25.4 mm,

respectively. The CPU time taken for running the module

using a PC IV 65 MHz, 98 MB RAM for a maximum of

10,000 function evaluations is 2 s. Further, by setting the

population size as 100, while the maximum permitted

generations was 500, ten trial runs were carried out with

ten different combinations of constants. It is to be noted

that the least cost of the 419,000 units is determined at the

first instant of every trial run. The average number of

function evaluations taken to obtain the least cost is 23,000,

while the population size is 100. This ensures that DE

performs well in searching for an optimal solution for this

example without getting trapped in a local minimum

value. The computation time taken for 50,000 function

evaluations is 7 s. Table 3 presents the average number of

function evaluations reported in the literature for obtaining

the least cost of 419,000 units. Figure 4 shows an evolution

process for a two-loop network corresponding to the least

number of function evaluations obtained in the trial runs.

Example 2 (Hanoi network)

The second test network (Figure 5) is a three-loop water

distribution network of the Hanoi city water distribution

system, which consists of thirty-two nodes, thirty-four pipes

and a reservoir. The input data for this problem is given in

Fujiwara & Khang (1990) and is presented in Tables 4

and 5. The design of this network is restricted to selecting

six different diameter pipes assumed to be commercially

available (Table 5). The minimum pressure head require-

ment for all the nodes is set at 30 m. The solution space

consists of 634 numbers of solutions, as there are 6 possible

pipe diameters and 34 links in the system. Similar to the

previous case study, 300 trial runs are performed by keeping

the population size as 20 with weighting factors ranging

from 0.6–0.9 (mutation rate) and crossover constant

ranging from 0.3–0.5. The termination criterion for the

algorithm is arbitrarily set to 500 generations. In each

combination of constants, 30 trials are performed with

different initial random seeds. The network solution having

a least cost of $60,81,087 was obtained 62 times out of

Figure 6 | Evolution process for Hanoi network.

Table 7 | Solutions for Hanoi network

Authors Algorithm Number of function evaluation Cost (units)

Savic & Walter (1997) Genetic algorithm 1,000,000 6,073,000

Cunha & Sousa (1999) Simulated annealing algorithm 53,000 6,056,000

Geem et al. (2002) Harmony search 200,000 6,056,000

Eusuff & Lansey (2003) Shuffled frog leaping algorithm 26,987 6,073,000

Liong & Atiquzzaman (2004) Shuffled complex algorithm 25,402 6,220,000

Neelakantan & Suribabu (2005) Standard GA 1,234,340p 6,081,087

Neelakantan & Suribabu (2005) Modified GA 74,500p 6,081,087

Vairavamoorthy & Ali (2005) Genetic algorithm 18,300 6,056,000

Pipe index vector

Suribabu & Neelakantan (2006b) Particle swarm optimization 6,600p 6,081,087

Kadu et al. (2008) Modified GA 1 18,000 6,056,000

Kadu et al. (2008) Modified GA 2 18,000 6,190,000

Present work Differential evolution 48,724 6,081,087

pCorrespond to the minimum number of function evaluations.
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300 trials. Further, by increasing the population size to 100

and restricting the maximum generation to 1,000, 50 trial runs

are performed for ten different combinations of constants

and it is observed that most of the time, the least cost

solution is obtained within the first five trial runs for each

combination of constants. It is to be noted from Table 6

that, out of 50 trials, 41 times a least cost of $6,081,087

is obtained. The computational times taken for the

Table 8 | Pipe diameter (mm) and nodal pressure heads (m) for solutions of Hanoi network obtained using EPANET version 2

Network cost

$6.056 million $6.073 million $6.081 million $6.220 million

Pipe/node no. Dia. (mm) Pres. (m) Dia. (mm) Pres. (m) Dia. (mm) Pres. (m) Dia. (mm) Pres. (m)

1 1,016 100.00 1,016 100.00 1,016 100.00 1,016 100.00

2 1,016 97.14 1,016 97.14 1,016 97.14 1,016 97.14

3 1,016 61.67 1,016 61.67 1,016 61.67 1,016 61.67

4 1,016 56.87 1,016 56.88 1,016 56.92 1,016 57.54

5 1,016 50.92 1,016 50.94 1,016 51.02 1,016 52.43

6 1,016 44.64 1,016 44.68 1,016 44.81 1,016 47.13

7 1,016 43.16 1,016 43.21 1,016 43.35 1,016 45.92

8 1,016 41.39 1,016 41.45 1,016 41.61 762 44.55

9 1,016 39.98 1,016 40.04 1,016 40.23 762 40.27

10 762 38.93 762 39.00 762 39.20 762 37.24

11 609.6 37.37 609.6 37.44 609.6 37.64 762 35.65

12 609.6 33.94 609.6 34.01 609.6 34.21 609.6 34.52

13 508 29.74p 508 29.80p 508 30.01 406.4 30.32

14 406.4 35.01 406.4 35.13 406.4 35.52 304.8 34.08

15 304.8 32.95 304.8 33.14 304.8 33.72 304.8 34.08

16 304.8 29.87p 304.8 30.23 304.8 31.30 609.6 36.13

17 406.4 30.03 406.4 30.32 406.4 33.41 762 48.64

18 508 43.87 508 43.97 609.6 49.93 762 54.00

19 508 55.54 508 55.58 508 55.09 762 59.07

20 1,016 50.49 1,016 50.44 1,016 50.61 1,016 53.62

21 508 41.14 508 41.09 508 41.26 508 44.27

22 304.8 35.97 304.8 55.93 304.8 36.10 304.8 39.11

23 1,016 44.30 1,016 44.21 1,016 44.52 762 38.79

24 762 38.57 762 38.90 762 38.93 762 36.37

25 762 34.86 762 35.55 762 35.34 609.6 33.16

26 508 30.95 508 31.53 508 31.70 304.8 33.44

27 304.8 29.66p 304.8 30.11 304.8 30.76 508 34.38

28 304.8 38.66 304.8 35.50 304.8 38.94 609.6 32.64

29 406.4 29.72p 406.4 30.75 406.4 30.13 406.4 30.05

30 304.8 29.98p 406.4 29.73p 304.8 30.42 406.4 30.10

31 304.8 30.26 304.8 30.19 304.8 30.70 304.8 30.35

32 406.4 32.72 304.8 31.44 406.4 33.18 406.4 31.09

33 406.4 406.4 406.4 508

34 609.6 508 609.6 609.6

pNodal pressure head less than required minimum pressure head of 30m.
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maximum of 10,000 and 100,000 function evaluations are

6 and 52 s, respectively. The average number of function

evaluations is determined as 6,244 and 48,724 for popu-

lation sizes of 20 and 100, respectively. This clearly shows

that population size plays a vital role in obtaining the

optimal solution with a certain degree of confidence. From

the trial runs, one run provides a least cost at the expense of

3,540 function evaluations and corresponding mutation and

crossover constants are 0.6 and 0.4, respectively. Figure 6

shows the evolution process for the Hanoi network

corresponding to the least function evaluations obtained

in the trial runs. The results obtained using DE and those

previously reported in the literature are shown in Table 7.

The obtained solution cost is higher than the cost reported

in the notable literature (Savic & Walter 1997; Cunha &

Sousa 1999; Vairavamoorthy & Ali 2005). This variation in

the cost of the solutions is due to the use of different a

values. Table 8 shows the optimal diameter and the nodal

Figure 7 | New York City water supply tunnels.

Table 9 | Available pipe diameters and their associated unit length costs

Diameter (in) Pipe cost ($/ft)

0 0.0

36 93.5

48 134.0

60 176.0

72 221.0

84 267.0

96 316.0

108 365.0

120 417.0

132 469.0

144 522.0

156 577.0

168 632.0

180 689.0

192 746.0

204 804.0
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Table 11 | Optimal diameter (in inches) for parallel pipelines for New York City tunnel expansion problem

Pipe Savic & Walters (1997) Lippai et al. (1999) Montesinos et al. (1999) Wu et al. (2001) Maier et al. (2003) Eusuff & Lansey (2003)

Present

work

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 108 132 0 108 144 132 144

8 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0

15 0 0 120 0 0 0 0

16 96 96 84 96 96 96 96

17 96 96 96 96 96 96 96

18 84 84 84 84 84 84 84

19 72 72 72 72 72 72 72

20 0 0 0 0 0 0 0

21 72 72 72 72 72 72 72

Costp 37.13† 38.13† 38.80 37.13† 38.64 38.13† 38.64

Avg. Eval. 46,016 18,450 37,186 13,928 13,928 5,494

0 indicate no parallel line required.
pCost in $ million.
†Nodal pressure head is less than required minimum.

Table 10 | Results of the trial runs for New York City network

Trial run no Weighting factor Crossover probability

Number of times the least cost

solution obtained (out of 30 trials)

Average number of function evaluation

in getting least cost solution

1 0.8 0.5 22 3,974

2 0.8 0.4 24 6,870

3 0.8 0.3 19 7,820

4 0.7 0.5 23 6,340

5 0.7 0.4 16 4,780

6 0.7 0.3 17 5,485

7 0.6 0.5 19 3,866

8 0.6 0.4 28 6,420

9 0.9 0.5 24 4,504

10 0.7 0.6 20 4,885

Average no. of function evaluations for the solution ($38.64 million) 5,494
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pressure heads for the solutions having costs of $6.056,

$6.073, $6.081 and $6.220 million while analysing using

EPANET version 2. It can be seen from Table 8 that the

minimum required pressure head (30 m) is not satisfied at a

few nodes for the solutions having costs of $6.056 and

$6.073 million.

Example 3 (New York City water supply system)

The New York City water supply system as presented by

Schaake & Lai (1969) is a gravity flow system that draws

water from a single source (the Hill View Reservoir), which

is shown in Figure 7. This problem requires a parallel

expansion, since the existing facilities could not satisfy all

the water demands at the required nodal pressures. One of

the ways to resolve this situation is by installing new pipes

parallel to the existing ones; hence the optimisation

problem consists of determining the diameter of the new

pipes so that the expansion cost is minimised. The geometric

data and demand at each node are presented along with the

layout of the network (Figure 7). For all new and existing

pipes a Hazen–Williams roughness coefficient equal to 100

is considered. The minimum allowable hydraulic gradient

line at all nodes is 255.0 ft, except for nodes 16 and 17 for

which these values are 260.0 ft and 272.8 ft, respectively.

Table 12 | Nodal pressure heads (ft) for solutions of New York City water supply

network obtained using EPANET version 2

Network cost

Pipe/Node no. $37.13 million $38.13 million $38.64 million $38.80 million

1 300.00 300.00 300.00 300.00

2 294.27 294.23 294.21 294.63

3 286.32 286.20 286.15 287.23

4 283.99 283.84 283.79 285.08

5 281.93 281.76 281.70 283.21

6 280.34 280.15 280.07 281.79

7 277.84 277.61 277.51 279.60

8 276.27 276.56 276.67 276.47

9 273.49 273.70 273.78 274.27

10 273.46 273.66 273.74 274.24

11 273.59 273.79 273.87 274.41

12 274.89 275.07 275.14 275.86

13 277.89 278.04 278.10 279.06

14 285.43 285.53 285.56 287.05

15 293.27 293.31 293.33 295.31

16 259.79p 260.00 260.08 260.59

17 273.40 273.60 273.68 274.18

18 260.93 261.11 261.18 261.91

19 254.80p 254.98p 255.05 255.78

20 260.45 260.65 260.73 261.26

pNodal pressure is less than required minimum.

Figure 8 | Fourteen-pipe network expansion problem.
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Table 9 provides the set of allowable diameters and their

associated unit length costs as available in the year 1969, so

that comparisons can be made with previous studies.

By limiting the maximum number of generations to 500,

30 trial runs are performed with different initial random

seeds for ten different combinations of DE constants by

setting the population size as 20. The results of the trial runs

are presented in Table 10. It can be seen that, out of 300

trial runs, 212 trials gave a solution cost of $38.64 million

with an average number of function evaluations of 5,494.

From the trial runs, one run provides a least cost at the

expense of 3,220 function evaluations and the correspond-

ing mutation and crossover constants are 0.6 and 0.5,

respectively. The CPU time taken for 10,000 function

evaluations is 3 s. Maier et al. (2003) presented a solution

with the same cost as found in the present study with an

average function evaluation of 13,928. Table 11 provides

a comparison of optimal diameter for parallel pipes with

those reported in the literature. The nodal pressure head for

the solutions having costs $37.13, $38.13, $38.64 and

$38.80 million are summarised in Table 12 for comparison.

It is found that the pressure head for solutions having costs

of $38.64 and $38.80 million are above the minimum

required values, while analysing using EPANET version 2.

Example 4 (14-pipe network)

This example network consists of two supply sources

(a reservoir and a tank) with 14 pipes. This network needs

expansion as well as possible rehabilitation of three pipes in

order to satisfy the three-demand pattern and associated

minimum pressure. Out of 14 pipes, the diameters of 5 pipes

are to be newly selected from commercially available sizes;

three existing pipes may be cleaned, duplicated or left alone.

Figure 8 shows solid lines representing the existing system

and dashed lines depicting the new pipes. Elevations, pipe

lengths, diameters and Hazen–Williams coefficients are

also given in Figure 8. The length of all the pipes is 1,609 m

except for pipes 1 and 4 whose lengths are 4,828 m and

6,437 m, respectively. Table 13 shows the pipe costs and

available diameters. Three demand patterns (including two

fire loading cases) and the associated minimum pressure

heads are given in Table 14. By changing DE parameters,

300 trial runs are performed with a population size of

Table 13 | Available pipe sizes and associated costs for the 14-pipe network

Pipe diameter (mm)

Cost for a new

pipe ($/m)

Cost for cleaning

a pipe ($/m)

152 49.54 47.57

203 63.32 51.51

254 94.82 55.12

305 132.87 58.07

356 170.93 60.70

407 194.88 63.00

458 232.94 –

509 264.10 –

Table 14 | Demand patterns and associated minimum allowable pressures for the 14-pipe network

Demand pattern 1 Demand pattern 2 Demand pattern 3

Node

Demand

(L/s)

Minimum allowable

pressure head (m)

Demand

(L/s)

Minimum allowable

pressure head (m)

Demand

(L/s)

Minimum allowable

pressure head (m)

2 12.62 28.18 12.62 14.09 12.62 14.09

3 12.62 17.61 12.62 14.09 12.62 14.09

4 0.00 17.61 0.00 14.09 0.00 14.09

6 18.93 35.22 18.93 14.09 18.93 14.09

7 18.93 35.22 82.03 10.57 18.93 14.09

8 18.93 35.22 18.93 14.09 18.93 14.09

9 12.62 35.22 12.62 14.09 12.62 14.09

10 18.93 35.22 18.93 14.09 18.93 14.09

11 18.93 35.22 18.93 14.09 18.93 14.09

12 12.62 35.22 12.62 14.09 50.48 10.57
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Table 15 | Results of the trial runs for 14-pipe network

Trial run number Weighting factor Crossover probability

Number of times the least cost

solution obtained (out of 30 trials) Evaluation number

1 0.9 0.5 21 1,368

2 0.9 0.4 23 1,448

3 0.8 0.5 22 1,234

4 0.8 0.4 25 1,456

5 0.7 0.5 24 1,222

6 0.7 0.4 25 916

7 0.6 0.5 29 1,750

8 0.6 0.4 26 1,122

9 0.5 0.5 22 1,790

10 0.5 0.4 22 1,670

Average no. of function evaluations for the solution ($1.75 million) 1,398

Table 16 | Solutions for 14-pipe expansion problem

Pipe Simpson et al. (1994) Wu & Simpson (1996) Maier et al. (2003) Present work

1 Leave Leave Leave Leave

4 Dup 356 Dup 356 Dup 356 Dup 356

5 Leave Leave Leave Leave

6 305 305 305 305

8 203 203 203 203

11 203 203 203 203

13 152 152 152 152

14 254 254 254 254

Cost ($ million) 1.750 1.750 1.750 1.750

Avg. function evaluation 20,790 6,181 8,509 1,398

Leave—No change in status of existing pipe.

Dup—Providing a new parallel pipe while retaining existing pipe as it is.

Table 17 | Allowable and actual pressure heads (m) for optimal solution

Demand pattern 1 Demand pattern 2 Demand pattern 3

Node Hallow Hact ($1.75 million) Hallow Hact ($1.75 million) Hallow Hact ($1.75 million)

2 28.18 36.33 14.09 25.05 14.09 30.56

3 17.61 30.51 14.09 19.42 14.09 24.60

4 17.61 26.90 14.09 16.26 14.09 20.54

6 35.22 46.92 14.09 18.75 14.09 34.42

7 35.22 50.09 10.57 12.78 14.09 37.61

8 35.22 59.31 14.09 41.44 14.09 48.05

9 35.22 51.92 14.09 24.12 14.09 34.70

10 35.22 49.83 14.09 22.41 14.09 26.73

11 35.22 47.57 14.09 24.91 14.09 18.26

12 35.22 50.03 14.09 27.37 10.57 13.70
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20 and limiting number of generations as 500. The

minimum cost solution ($1.750 million) was obtained 239

times out of 300 trial runs. Table 15 shows the results of trial

runs. From the trial runs, one trial provides a least cost at

the expense of 916 function evaluations and corresponding

mutation and crossover constants are 0.7 and 0.4, respect-

ively. The CPU time taken for 10,000 function evaluations is

2 s. Table 16 provides the optimal solution obtained using

the DE algorithm and those reported in the literature. Table

17 shows the comparative picture of expected and actual

pressure head for three demand patterns. From the results

of the benchmark networks, it is evident that DE can be

one of the promising algorithms for optimal sizing and

rehabilitation of water distribution networks.

CONCLUSION

The present paper has focused on the application of the DE

algorithm for optimal design and rehabilitation of existing

water distribution networks. The optimal network design

is computationally complex and they generally belong to

a group of NP-hard problems. In the present research

work, the efficiency of DE is tested with four well-known

benchmark networks, which are often reported in the

literature. Results reveal that the DE technique is very

effective in finding near-optimal or optimal solutions,

within a fair number of function evaluations. There are

many developments taking place in genetic algorithms and

simulated annealing algorithms for handling large-sized

water distribution system design. Compared to these

algorithms, DE works distinctly well. From the trial runs,

it is understood that the effectiveness of DE is due to the use

of the weighted difference vector between two individuals

and a third individual, which provides the basis for

exploring better directions in the search space. The role of

randomness in DE is relatively less while compared to the

genetic algorithm and other heuristic algorithms like

simulated annealing, particle swarm optimisation, ant

colony algorithm and shuffled leapfrog algorithm. The DE

parameters used in the case study problems are selected

arbitrarily and, like all heuristics, the best parameter values

are problem-dependent.
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