
Neuro-fuzzy modeling for level prediction for the

navigation sector on the Magdalena River (Colombia)

Nelson Fernández, William Jaimes and Edmary Altamiranda

ABSTRACT

Nelson Fernández

William Jaimes

Centro de Investigaciones en Hidroinformática,
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The variations associated with level changes and the state of the channel in the Magdalena River

in Colombia (South America) frequently affect the navigation possibilities for boats and ferries,

which cause high costs for their users. For this reason, this work presents a bio-inspired model

to support the decision-making concerning the navigation using a neuro-fuzzy approach

developed in previous works with a novel application. Considering the average daily levels of

the river registered by the limnigraphical stations from the Colombian Institute for Hydrological,

Meteorology and Environmental Studies (IDEAM), during the time period between 1998 and 2003

for the Puerto Salgar, Puerto Berrio, El Banco and Calamar locations, it was possible to design

and establish a neuro-fuzzy hydrological model to predict with great precision the level of water

in the river for the route of navigation, allowing the appropriate decision-making for Magdalena

River operators to pre-determine the weight of shipment for any boat or ferry on their route.

The developed model showed better performance for the forecasting than the previously

established deterministic models for this specific application.
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river navigation

INTRODUCTION

Hydrological forecasting for the Magdalena River allows

delivering sufficient information to the users stating the

probability (quantitative or qualitative) of the characteristic

conditions for the superficial or underground waters

(water levels, water flow, water volume of sediments,

water quality, etc). This information can support decision-

making for the navigation sector in order to obtain the

maximum benefits or to minimize the losses, representing

adversity for the economic development, social well-being

and environmental balance for the flow of products on the

Magdalena River.

According to the experience of the Colombian Institute

of Hydrology, Meteorology and Environmental Studies

(IDEAM), there was an increasing need for hydrological

forecasting in order to orient the decisions made by users

of different areas on the river, such as: (1) short term

programming of water utilization; use of water level

forecasting to generate the best utilization strategy in

situations of water crisis for the hydro-energy sectors,

fluvial navigation, farming and water supply for popu-

lations; (2) prevention of disasters (floods, shortage of water

supply and crop losses) due to water excess, rises, overflows,

low levels and extreme low levels and (3) prevention of

water pollution; water dynamics and quality variables’

information in certain sections of the river, whicch can

support decision-making to avoid water pollution affecting

the species or ecosystems exposed.

Conventionally, the forecasting of water levels has been

obtained using deterministic or stochastic models, consid-

ering mathematical and physical principles that define the

hydrological process dynamics. Deterministic models can

be grouped as empirical or conceptual and we treat the
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hydrological processes in a phenomenological way; they

are also based on fundamental flow equations to simulate

actual processes from historical streamflow data, as well

as data on rainfall, infiltration, evapotranspiration, etc

(Croton & Barry 2001). On the other hand, the stochastic

modeling approach is used to generate long hypothetical

sequences of discharges based on the statistical and

probability characteristics of the historic records. Stochastic

models can exhibit linear and nonlinear structure

(Ochoa-Rivera 2008). Among linear models, the auto-

regressive models (AR), moving average models (MA),

auto-regressive moving average models (ARMA) and

disaggregation models have been used. Among the non-

linear models, the fractional Gaussian noise models (FGN),

the broken line models (BL) and the periodic auto-

regressive models (PAR) have been used for hydrological

applications. For river flow forecasting, the stochastic

models that have been most widely used belong to the

class of ARIMA (Auto-Regressive Integrated Moving

Average) models proposed by Box & Jenkins (1976)

(e.g. Mujumdar & Kumar 1990).

Deterministic modeling applications have also been

used for streamflow forecasting including nonlinear deter-

ministic modeling in river flow (Sivakumar 2006) and

nonparametric streamflow simulation by wavelet or Fourier

analysis (Bayazit et al. 2001). Stochastic modeling appli-

cations can be found in National Weather Service River

Forecast System (NWSRFS) studies, which are based on

a probabilistic model (Day 1985), the Soil Moisture

Accounting and Routing (SMAR) model, which is a

conceptual type linear model of rainfall–runoff (Kachroo

1992), probabilistic models for forecasts in operational

hydrology (Croley 2000); statistical modeling and its

validation to mimic real flow and inundation patterns

at the catchment, reach and waterbody scaled (Costelloe

et al. 2003), the use of the K-nearest-neighbor resample

designed for the use of synthetic data through an example

with daily rainfall (Mehrotra & Sharma 2006) and the

use of a partial least-squares regression (PLSR) technique

for a long lead-time streamflow forecast model (Tootle

et al. 2007). These models can exhibit linear or nonlinear

characteristics with concentrated or distributed parameters

among other features (Enfield et al. 2005; Kanso et al. 2005;

Michael et al. 2005; Ye et al. 2005).

It is well known that accuracy in forecasting is a

difficult task, in terms of prediction, due to the high

degree of nonlinearity, uncertainty and time-variant

behavior in hydrological dynamics (Li & Li 2000; Chang

& Chang 2006). Recently, significant attention has

been directed towards the modeling of hydrosystems

using non-conventional techniques with approximation

and generalization capabilities (Oh & Pedrycz 2006;

Salski & Holsten 2006). Together with the evolution of

computational intelligence, the testing and evaluation of

bio-inspired techniques, like Artificial Neural Networks

(ANN) for hydrological forecasts, have expanded and

enriched the modeling field and, at the same time, they

have proved to be a suitable alternative with substantial

advantages with respect to conventional models (Wong

1991; Minnes & Hall 1996; Wedding & Cios 1996; ASCE

Task Committee 2000a,b; Faraway & Chatfield 1998;

Ni & Xue 2003; Cigizoglu & Kisi 2005, 2006; Ondimu

& Murase 2007).

ANN are computational models that intend to replicate

the brain neural processing. These data-driven techniques

have been successfully applied for modeling of complex

and nonlinear dynamic systems including hydrological

systems to approach problems related to the prediction

and forecasting of hydrologic variables. Multi-Layer

Perceptron (MLP) and Recurrent Networks (RNN) have

gained considerable attention for nonlinear systems

modeling applications. The MLP provides a nonlinear

static map between inputs and outputs of ANN (Beale &

Jackson 1990), and several applications for the prediction

of hydrologic variables using input–output nonlinear

identification can be found (Gopakumar et al. 2007).

The RNN have also gained popularity as an emerging

dynamic neural network variant which can perform

temporal processing using feedback loops that carry

information from the previous processing steps into the

current processing steps. (Pan & Wang 2004). In this

context, neural networks have become popular in

rainfall and runoff modeling (e.g. Jain & Indurthy 2003;

Rajurkar et al. 2004), prediction of daily streamflow

(Birikundavyi et al. 2002; Cigizoglu 2003), prediction of

river discharge (Imrie et al. 2000), prediction of river stage

(Thirumalaiah & Deo 1998), real-time prediction of catch-

ment flow (Aqil et al. 2007), modeling rating curve
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(Sudheer & Jain 2003) and for daily suspended sediment

forecasting (Partal & Cigizoglu 2008), among other

examples.

Besides the applicability of MLP ANN for the modeling

of daily river flows, the Self-Organization Maps (SOMs), an

unsupervised learning technique, have been used for

modeling the exploration of rainfall and discharge patterns

in humid tropical river basins for the monsoon period are

carried out byGopakumar et al. (2007). In that study, SOMs

are used for exploration of hydrologic data and to identify

the mutually dependent features characterizing the hydro-

logic system of the basin in space and time, then with the

knowledge derived from the SOM analysis the performance

of the developed river flow model is improved.

Fuzzy Logic, originally proposed by Zadeh (1965), has

also been used with good results in hydrological modeling,

due to their potential of dealing with uncertainties,

providing linguistic representation of the uncertain expre-

sions associated wiht the system under study. Fuzzy logic

has been sucessfully applied in modeling of hydrological

processes such as rainfall forecasting (Yu & Chen 2000;

Hundecha et al. 2001; Xiong et al. 2001); reservoir operation

(Russell & Campbell 1996); design of an expert system to

determine stream water quality classification in Korea

(Lee et al. 1997); in the development of a tool for assess-

ing sustainability of stormwater management (Cobiac &

Jansons 2005); and in the estimation of runoff and runoff

coefficient (Şen & Altunkaynak 2005) among others.

In general, fuzzy logic approaches have been applied in

the estimation of water resources for more than a decade

(Keskin et al. 2007).

The integration of neural networks and fuzzy logic

has converged into the evolution of hybrid tools as

Neuro-Fuzzy Systems or Adaptative Neuro-Fuzzy Inference

systems (ANFIS). ANFIS has the potential to capture

the benefits of both neural networks and fuzzy logic

techniques in a single framework and can be employed to

handle uncertainties in the systems conditions (Mehta &

Jain 2008). Recently, in hydrological modeling studies,

ANFIS has been demonstrating its potential in streamflow

prediction (Aqil et al. 2007); modelling the complex

turbulent fluxes across strong shear layers (Hankin et al.

2001); short-term water level prediction (Bazartseren et al.

2003); groundwater vulnerability prediction (Dixon 2005);

flood forecasting (Chen et al. 2006); daily pan-evaporation

modeling (Kisi 2006); and river flow estimation and time-

series modeling (Firat & Güngor 2007, 2008).

In the above context, this paper presents a novel ANFIS

application for river level forecasting, based on historical

time series, applied to the Magdalena River in Colombia

for navigation purposes. This Neuro-Fuzzy Model (NMF)

allows navigators to know the future river levels based on

past river level values, with a relatively small margin of

error. This allows better decision-making for the navigation

sector applicable to cargo carriers and ships.

The neuro-fuzzy system applied in this paper is based

on the approach presented in Altamiranda & Colina (2002).

This approach differs from typical ANFIS in the properties

for modeling on line complex nonlinear systems due to the

dynamic features incorporated by recurrent connections

and the variant time learning algorithm. Typical ANFIS

systems are built in a feedforward structure and, in some

cases, conformed by multiple layers. The proposed system in

Altamiranda & Colina (2002) is a variant time recurrent

single-layer system where global minumun error can be

guaranteed. However, for the water level application

presented in this paper the approach proposed by

Altamiranda & Colina (2002) was applied in a different

way. A static version of the algorithm was used for offline

training of a neuro-fuzzy system to conform with the river

water level model structure. The recurrent connections

concept was applied only for the prediction structure,

allowing us to obtain a prediction horizon of 10 days. The

recurrent structure for prediction allows us to monitor the

efficiency of the generated outputs within the prediction

horizon and allow for updating the model in time when it is

required, which makes the model valid in time. With

conventional feedforward structures, if deviations are

detected after some time the model has been generated,

offline training, with numerous data and iterations, is

needed each time the model needs to be updated.

HYDROLOGICAL MODELING BACKGROUND IN THE

MAGDALENA RIVER

Since the 1970s, the Colombian government has been

committed to better knowledge and comprehension of the
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Colombian hydrological and morphological regimes on

its rivers and to find satisfactory solutions to the fluvial

navigational problems. At that time, in the case of the

Magdalena River, the Netherlands government recom-

mended the prediction of water levels during the season

of low water for cargo operators based on the reasoning

done by experts, on the crossed distance and minimal

available depth of the distance (Rivera & Zamudio 2006).

According to Rivera & Zamudio (2006), Dutch experts

were studying the decrease of water levels in the Calamar

locality on the Magdalena River and recommended the

implementation of their hydrological model to the Colom-

bian government. This model has the following expression:

RCt
¼ RCt0

exp

$
ð2atÞ þ R

*

LV ðt2 Dt1Þ þ gR
*

Gðt2 Dt2Þ

%
ð1Þ

where RCt
: flows of Magdalena River in Calamar, future

time; RCt0
: flows of Magdalena River in Calamar, present

time; R
*

LV : relative discharge of Cauca River in Las Varas;

R
*

G: relative discharge of Cauca River in Gamarra; a, g, b:

coefficients to be assessed from the rating curves; t: time

(in days); Dt1, Dt2: transit time periods.

Using Equation (1) they proposed to calculate the

discharge at the Calamar locality transforming the discharge

into the water level at this station from the flow calibra-

tion curve. Unfortunately, the recommendations and con-

clusions to improve navigation on the Magdalena River

were not applied by the state agencies and another model

has not been developed since then.

Later, at the beginning of the 1990s, with the creation of

IDEAM, there was a rebirth of the need to implement a

better alert system for extreme hydrological events

(floods and low level water) in this river. In 2000 IDEAM

was already processing real-time data transmission of water

levels for the locations Puerto Salgar, Puerto Berrı́o,

El Banco and Calamar. At the same time the qualitative

system of hydrological alert was improved. Every morning,

information about rain dynamics from the last few days

and the variable forecasts of rainfall, cloudiness, air

temperature and humidity over the whole country were

provided. These were calculated using foreign models

(Rivera & Zamudio 2006).

This information and the water levels dynamics allowed

the elaboration of certain qualitative projections on the

water level trends for the next few days. In this way,

qualitative forecasts were possible.

By the end of 2002, IDEAM defined a model which

simulates the level dynamics by daily averages during

periods of low water levels for Calamar, El Banco and

Puerto Berrı́o along with Puerto Salgar. The following

dynamic model was considered (Rivera et al. 2004):

dH

dt
¼ fðt;kz;HÞ ð2Þ

where t: a parameter that represents the inertial property of

any system under the influence of some external factor; k:

a parameter that represents other system properties and

z: a parameter that represents the external factor that

influences the system.

Expressing the function by the following equation:

fðt;kz;HÞ ¼ gh; g ¼ fðk; tÞ: ð3Þ

The parameters gh represent the internal system

properties and the inertial property. In this case one of

the properties was represented as (g ¼ 1), obtained after

the calibration process.

The model for simulating the water level dynamics then

has the following expression:

dH

dt
¼ gh: ð4Þ

To apply this model to the selected locations, the

equation was solved following the deterministic equations:

Hiþ1 ¼ DtghþHi ð5Þ

g ¼ 1 Dt ¼ 1: ð6Þ

h ¼ ^
Hi21 þHi

w

����
���� ð7Þ

where Hi: water level in the location of interest (in meters);

the index “i” indicates that water level is from the day it was

forecast; Hi21: water level in the location of interest

(in meters); the index “i 2 1” indicates that water level is

from the day before it was forecast; Hiþ1: water level in the

location of interest (in meters); the index “i þ 1” indicates

that water level is from the next day forecast and f:

parameter that indicates the relation between water levels.
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The positive or negative sign of h depends on: (a) rain

quantity at the basin of the Magdalena River, (b) the trend

of the rain at the basin, which was obtained from the

meteorological forecasts, (c) the trend of humidity at the

basin and (d) the topography upstream from the sited

location.

The model allows the prediction of the water level in

terms of daily averages during the low water period, as well

as minimum and maximum average levels during the day.

The values of the daily average level are estimated by the

expression

H ¼

Pn
j¼1Hj

n
ð8Þ

where n: total quantity of water level values; Hj: daily water

level and H: average water level.

Currently the above developed and validated determi-

nistic model (DM) for the four locations (Puerto Salgar,

Puerto Berrı́o, El Banco and Calamar) is applied every day

by the environmental corporation in charge of the manage-

ment of the Magdalena River – CORMAGDALENA.

DESIGN AND IMPLEMENTATION OF THE

NEURO-FUZZY HYDROLOGIC MODEL (NFM)

The design of the proposed model is based on the neuro-

fuzzy approach presented in Altamiranda & Colina (2002).

Neuro-fuzzy structure

The concept associated with this approach modifies the

conventional neuron model which possesses constant

synaptic weights followed by a nonlinear activation func-

tion. The neuro-fuzzy structure has nonlinear synapses

characterized by sets of fuzzy IF–THEN rules with

singleton weights as a consequence; recurrent connections

are also included to provide dynamic properties to this

model; These characteristics make this structure a good

candidate for modeling of complex nonlinear systems.

The structure of the fuzzy neuron presented in

Altamiranda & Colina (2002) is shown in Figure 1.

Providing a quadratic learning error, a single ordinary

neuron model guarantees to find a global minimum.

The neuron output (9) and the learning error (10) are

represented by

Y ¼
Xm
i¼1

fiðxiÞ ð9Þ

E ¼
Xp
k¼1

yk 2 ydk

� �2
ð10Þ

where xi is the input signal to the ith synapse, wi the

corresponding input weight, yk the neuron output for the

kth pattern, ydk is the desired output at the kth training

pattern and p is the number of patterns.

Note from (9) and (10) that the error-weight space

exhibits a parabolic function. In order to avoid the local

minima problem, a fuzzy neuron, where many parameters

can be embedded, can accomplish generalization by itself.

The characteristics of each synapse are represented by

a nonlinear function fi for feedforward connections and ~fi

for feedback connections. The feedback inputs correspond

to dynamic delays of the neuron output. Aggregation of

synaptic signals is achieved by an algebraic sum.

Thus the output of this fuzzy neuron can be represented

by the following Equation (11):

Y ¼
Xn
j¼1

fjðujÞ þ
Xl
r¼1

~fiðyk2rÞ: ð11Þ

Note that the input space is (x1, … , xm) ¼ (u1, … , un, yk21,

… , yk2l), where m ¼ n þ l. The input space for xi is divided

into several fuzzy segments which are characterized by

Figure 1 | Neuro-fuzzy structure.
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membership functions mi1, mi2, … , miq within the range

between xmin and xmax, as shown in Figure 2.

The associated nonlinearities are determined by fuzzy

IF–THEN rules and the kth fuzzy IF–THEN rule in the

ith synapse output is obtained by fuzzy inference with

defuzzification, represented by:

If input signal xi is included in the fuzzy segment mik

then the synapse output is wik.

Compatibilities of the input signal xi with the ante-

cedents of these rules are obtained from the membership

functions mik, mi,kþ1 at which the constants wik and wi,kþ1 as

a consequence should be adopted.

A deterministic value of the synaptic output is obtained

by the defuzzification, the so-called center-of-gravity

method, defined by

fðxiÞ ¼

Pn
j¼1mijðxiÞwijPn
j¼1mijðxiÞ

¼
mikðxiÞwik þ mi;kþ1ðxiÞwi;kþ1

mik þ mi;kþ1

: ð12Þ

Since the membership functions are complementary

(the summation of two neighboring membership functions

is always unity), an input signal xi activates only one or two

rules simultaneously for each synapse. Thus, the output of

the fuzzy neuron may be rewritten as:

fðxiÞ ¼ mikðxiÞwik þ mi;kþ1ðxiÞwi;kþ1: ð13Þ

This equation implies that only activated branches are

effective for learning: therefore, only one or two weights

corresponding to the activated branches are adjusted at

the time.

Learning algorithm for the neuro-fuzzy structure

The learning algorithm used for this application is the static

version of the algorithm presented in Altamiranda & Colina

(2002), since the training is performed offline.

The general learning algorithm is defined in terms of

a steepest descent method, where the change of weights is

achieved for a set of input patterns p. The error index

is given by the average squared error for p patterns in the

following way:

EðkÞ ¼
1

2P

Xp
q¼1

yqðkÞ2 ydqðkÞ
� �2

¼
1

2P

Xp
q¼1

e2qðkÞ ð14Þ

where yq(k) is the output of the neuro-fuzzy structure, ydqðkÞ

is the desired output corresponding to the pattern q at

time k and eq(k) is a learning error between the RFN and

the desired output at time k. During the learning sessions,

the updating rule for the weights is given by

wi;jðkþ 1Þ ¼ wi;jðkÞ þ Dwi;jðkÞ: ð15Þ

Dwi;jðkÞ ¼ 2a
›EðkÞ

›wi;jðkÞ
: ð16Þ

The derivatives of the error index E(k) with respect

to the weights of the RFN are as follows:

›EðkÞ

›wi;jðkÞ
¼

Xp
q¼1

eqðkÞ
›yqðkÞ

›wi;jðkÞ
: ð17Þ

The adjustment for weights wi,j in time k is given by

Dwi;jðkÞ ¼ 2a
Xp
q¼1

›yqðkÞ

›fiðxq;iðkÞÞ

›fiðxq;iðkÞÞ

›wi;jðkÞ

" #
ð18Þ

where xq,i(k) corresponds to the qth pattern of the Ith input:

Dwi;jðkÞ ¼ 2a
Xp
q¼1

yqðkÞ2 ydqðkÞ
� �

mi;jðzq;iðkÞÞ: ð19Þ

On the other hand, recurrent connections are adapted

using the next updating rule:

D ~wi;jðkÞ ¼ D1 ~wi;jðkÞ þ D2 ~wi;jðkÞ

D1 ~wi;jðkÞ ¼ 2a
Xp
q¼1

eqðkÞ ~mr;jðyq k2 rÞ
� �

ð20Þ

Dw ~wi;jðkÞ ¼ 2a
Xp
q¼1

eqðkÞ
›yqðkÞ

›yqðk2 rÞ

" #
zrqðkÞ

Figure 2 | Membership functions for nonlinear synapses.
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where the mi,j and ~mr;j terms correspond to membership

functions associated to weights wi,j(k) and ~wr;jðkÞ, respect-

ively, and

›yqðkÞ

›yqðk2 rÞ
¼ ~wr;jðkÞ _~mr;jðyqðk2 rÞÞ

þ ~wr;jþ1ðkÞ _~mr;jþ1ðyqðk2 rÞÞ:

ð21Þ

Let zrqðkÞ be defined as

zrq ¼
›yqðk2 rÞ

› ~wr;jðkÞ
: ð22Þ

In order to provide dynamic characteristics to the

updating rule for recurrent connections, Equation (22) is

determined through successive application of the chain

rule. Without loss of generality, only first-order terms are

considered and therefore zrqðkÞ may be represented by the

following first-order time-varying linear system:

zrqðkÞ ¼
›yqðk2 rÞ

›yqðk2 r2 1Þ
zrqðk2 1Þ þ

›yqðkÞ

› ~wr;jðkÞ
:

zrq ¼ ~wr;jðk2 1Þ _~mðyqðk2 r2 1ÞÞ
h

þ ~wr;jþ1ðk2 1Þ _~mr;jþ1ðyqðk2 r2 1ÞÞ
i
zrqðk2 1Þ ð23Þ

þ ~mr;jðyqðk2 rÞÞ:

D ~wv
r;jðkÞ ¼ 2a

Xp
q¼1

eq mv
r;jðeqðk2 rÞÞ þ

›yvqðkÞ

›eqðk2 rÞ

" #
zrqðkÞ: ð24Þ

This is the general algorithm for an RFN, where one or

more dynamic delay(s) corresponding to the output term

can be embedded as recurrent inputs.

Application of the neuro-fuzzy structure for modeling

and prediction in the Magdalena River

Study area and input dataset

The data for the model synthesis was provided by the

Colombian Institute for Hydrological, Meteorology and

Environmental Studies (IDEAM) corresponding to average

daily levels of the river registered by the limnigraphical

stations in the Magdalena River (see Figure 3) at the

locations: Puerto Salgar (582800; 168msnm; tribute area:

74,410 km2), Puerto Berrı́o (683000; 108msnm; tribute

area 56,905 km2), El Banco (98000; 24msnm; tribute area

161,292 km2) and Calamar (1081500; 8msnm; tribute

area 275,438 km2).

The statistical characteristics (i.e. mean and standard

deviation;X ^ Sx, variation coefficient; Cvx, skewness coeffi-

cient; Csx, curtosis; Cux, maximum value; XMax, minimum

value; XMin, confidence intervals 95%; X95%) for the total

observed daily datasets in the four locations are given in

Tables 1 and 2 for the training and testing data, respectively.

Neuro-fuzzy structure for level modeling in the

Magdalena River

The neuro-fuzzy structure used for the river modeling only

considers feedforward connections to synthesize a time series

representation in days. The inputs correspond to the level of

water during three consecutive days and the output corre-

sponds to the day after. This is illustrated in Figure 4.

The original algorithm presented by Altamiranda &

Colina (2002) is proposed for online training of both

feedforward and recurrent connections, for online modeling

Figure 3 | Study area.
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applications where the variables to be estimated are

always available online to adjust continuously the neuron

synapses. For this case the data available correspond

to historical data, therefore the training needs to be

performed offline for the main feedforward connections in

the modeling phase. The feedback connections are only

used for the prediction phase.

Consequently, the fuzzy sets in the model associated

with nonlinear synapses are triangular complementary

functions and are shown in Figure 5.

The linguistic labels associated with the level functions

are structured in nine complementary membership func-

tions (three functions per each level representation: Low,

Medium and High), as illustrated in Figure 5. Since the

model is calculated using time series corresponding to the

river level, the membership functions are the same for

each input.

For xi, i ¼ 1 2 3, the membership functions can be

detailed according to Figure 5 as follows:

Membership functions for low level characterization:

mi1 ¼ LL

mi2 ¼ LM ð25Þ

mi3 ¼ LH

Membership functions for medium level characteri-

zation:

mi4 ¼ ML

mi5 ¼ MM ð26Þ

mi6 ¼ MH

Membership functions for high level characterization:

mi7 ¼ HL

mi8 ¼ HM ð27Þ

mi9 ¼ HH

Table 1 | Statistical characteristics of water levels values (in meters) at the study area used as training data

Characteristic Puerto Salgar Puerto Berrio El Banco Calamar

N (d) 1,000 1,000 1,000 1,000

X ^ Sx 2.9331 ^ 0.6304 4.1297 ^ 0.4381 7.0147 ^ 1.2458 6.4350 ^ 1.5895

Cvx 21.150 10.60 17.76 24.702

Csx 0.0428 0.5460 21.1981 21.5385

Cux 20.5959 20.6035 1.7869 2.1823

XMax 4.15 4.97 9.01 8.65

XMin 1.49 3.46 3.58 2.1

X95% 2.900, 2.967 4.106, 4.153 6.949, 7.081 6.351, 6.519

Table 2 | Statistical characteristics of water levels values (in meters) at the study area used as testing data

Characteristic Puerto Salgar Puerto Berrio El Banco Calamar

N (d) 90 90 90 90

X ^ Sx 2.8091 ^ 0.3592 3.8654 ^ 0.4847 7.9809 ^ 0.7571 6.9451 ^ 0.4093

Cvx 12.84 12.67 10.56 5.81

Csx 20.0342 0.1591 20.3743 0.0279

Cux 20.4415 20.2128 20.6750 21.0366

XMax 3.60 4.97 8.27 7.56

XMin 2.03 2.91 5.49 6.21

X95% 2.778, 2.816 3.830, 3.882 7.068, 7.148 6.924, 6.966
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This determines nine segments for characterizing the

inputs and therefore the rules can be defined as follows.

If input signal xi (river level at day i) is included in

the fuzzy segment mik, then the synapse output that will

be active at day i will be wik.

where i ¼ 1 2 3; k ¼ 1 2 9 and wik is calculated

according to Equations (15–19).

It can be observed from Figure 5 that the nine fuzzy

segments allow the fuzzy structure to have diversity on

the branch activations according to the river sections.

The lowest river level segment starts in 0m and the highest

level triangular segment ends in 8m. The trapezoid segment

at the end allows higher level values for flexibility and

to give also possibilities of further updates to the model

in the future. Any value above 8m is considered HH with

membership value “1”. The river sections have different

minimum and maximum levels which are within these

minimum and extended maximum values for the fuzzy

segments. The selection of the fuzzy triangular sets in

the proposed way, where each of them covers about 2m

within the maximum total range, together with the

complementary property of the functions make possible

a different activation of the neuron branches (segments)

for each case, avoiding overtraining and better generaliza-

tion features.

The training is achieved offline, with a learning rate

a ¼ 0.9. Training patterns were chosen from a database

corresponding to the river level during the time period

between 1998 and 2003. The pattern window for the

learning algorithm described in the previous section was

defined as p ¼ 10 patterns for each learning time instant.

Neuro-fuzzy structure for level forecasting in the

Magdalena River

The adjusted nonlinear synapses during the offline training

phase were used to achieve the prediction of the time

series in a feedback structure with external initial con-

ditions corresponding to the first three days of a 13 day

validation pattern, see Figure 6. The prediction horizon

considered for this application was 10d.

This neuro-fuzzy structure illustrates the static model

trained offline given by the feedforward connections and

Figure 4 | Neuro-fuzzy structure for water level modeling on the Magdalena River.

xi corresponds to the river level in meters (m) at day “i”.

Figure 5 | Fuzzy sets for nonlinear synapses (L: Low, M: Medium, H: High levels).

Figure 6 | Neuro-fuzzy structure for river water level forecasting, where x1 represents

the river level at day (k 2 1), x2 the river level at day (k 2 2) and x3 the river

level at day (k 2 3). Y is the river level at day k.
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the dynamic portion given by the feedback connections

which have been incorporated to validate the prediction

horizon. The first time the model is used for forecasting,

initial conditions of the river level need to be provided for

the first three days. For the extended prediction, the neuro-

fuzzy structure will process the outputs generated in

previous steps to produce the subsequent outputs within

the prediction horizon. Initial conditions for the river level

need to be updated with the historical data values, outside

the prediction horizon.

Implementation of the hydrological neuro-fuzzy

application for the Magdalena River

The application of neuro-fuzzy structures developed for

water level prediction in the Magdalena River was imple-

mented using Matlab 7.4 with a graphical user interface.

MODELING AND PREDICTION RESULTS

The model application results, shown as follows, are discus-

sed based on the prediction carried out for levels observed

in the Magdalena River at the locations of Puerto Salgar,

Puerto Berrı́o, El Banco and Calamar in November 2000.

Additionally, in order to have a comparative reference

for the model prediction ability, the neuro-fuzzy model

(NMF) was run in parallel with the Deterministic Model

(DM) proposed by Rivera et al. (2004), developed for

IDEAM, which is currently applied for decision-making

in the sector under study and which is available online

at: http://www.cormagdalena.gov.co.

The graphs presented in Figure 7 illustrate the perform-

ance of both models, NFM (dotted line) and DM

(dashed line), for prediction of daily water level at the

four locations on the Magdalena River, in contrast with

Figure 7 | Neuro-fuzzy and deterministic comparative forecasting for (a) Puerto Salgar, (b) Puerto Berrı́o, (c) El Banco and (d) Calamar.
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the level observed (solid line). It is illustrated in these

graphics that the NMF estimate follows the observed

values better in all locations than does the DM. It can be

observed especially at the first two stations, Puerto Salgar

and Puerto Berrı́o (Figures 7(a, b)), where the behavior

to be predicted showed a greater variability and the DM is

further away from the real data. In spite of this related

difficulty, the NFM showed greater accuracy. Thus, the

general performance of NFM in comparison to the observed

values was better than the DM, mainly due to the

overestimation generated by the DM.

The above-mentioned situation is confirmed by the

scatterplots shown in Figure 8 that show the measured

values of water level and predicted values from NFM and

DM. As can be observed from these scatter diagrams, the

performance of NFM is more accurate than DM for all

cases. The NMF estimates follow more closely the observed

values and they are quite near the fitted 458 line, which is

the reference for a perfect fitting applicable for both NFM

and DM models, indicating that the predicted and expected

values are the same. This fact can also be established

according to the performance and the adjustment estima-

tors (Table 3): the correlation coefficient, the root mean

squared error (RMSE) (Sudheer et al. 2002), the mean

absolute error (MAE) and the goodness-of-fit measures

of Gbench (Chang & Chang 2006) were calculated. In a

comparative way, the best adjustment was obtained by the

neuro-fuzzy model (NFM), rather than the deterministic

model (DM). This could be confirmed with the implemen-

tation of performance criteria that are shown in Table 1.

It is notable that NFM had more significant correlation

coefficients (p , 0.01) for all cases, while the DM did not

Figure 8 | Scatter diagrams of predicted vs observed from NMF and DM values for (a) Puerto Salgar, (b) Puerto Berrı́o, (c) El Banco and (d) Calamar.
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reach adequate correlations for the predictions of Puerto

Salgar and Puerto Berrio (p . 0.05), as it did for El Banco

and Calamar. This fact was confirmed by the calculation

of other performance criteria for the models, such as

RMSE, which evaluated the residuals and which shows

that the DM has significant errors since for this indicator

the greater errors are more important than the smaller ones.

With regards to the MAE, the NFM shows average absolute

errors that are lower than the DM at all the prediction sites

(lower than 0.04). From Gbench it was observed that the

behavior of the NFM, coming close to zero, can be classified

within the good-fit category (Chang & Chang 2006).

Table 3 | Evaluation criteria of performance of the models

Puerto Salgar Puerto Berrio El Banco Calamar

NFM DM NFM DM NFM DM NFM DM

R 0.9910 0.1210 0.9950 0.2450 0.9980 0.9340 0.9970 0.9840

RMSE 0.0377 0.3047 0.0386 0.2342 0.0324 0.2211 0.0387 0.1428

MAE 0.0376 0.1680 0.0385 0.1490 0.0339 0.2020 0.0386 0.1390

Gbench 0.0268 2.6205 0.0794 1.7402 0.0545 3.4928 0.1242 3.9746

AA 1.47 10.01 1.15 6.02 0.53 3.20 0.56 2.02

NFM: neuro-fuzzy model; DM: deterministic model (Rivera et al. 2004). For all cases NMF presents the best performance (values in bold).

Figure 9 | Cumulative percentage errors from the NFM and DM models.
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Finally, in order to test the robustness of each developed

model, the average absolute error evaluation criterion

(AARE), which gives performance in terms of prediction

level, was used. Thus, the calculated values for AARE show

that the average of the NFM was lower than 1.5%, while the

DM showed an average error margin of up to 10%. Perhaps

the most important point to highlight in this analysis is the

consistency shown by the NFM and its minimal variation

in the validations made throughout the stations studied.

The importance of the error margin is made more

evident when observing the progression of the percentage

accumulative errors made on those forecasted days; results

are shown in Figure 9. It is possible to notice that the DM

reaches accumulated percentages closer to 100 for the

stations all along the Magdalena River as follows: Puerto

Salgar—100.6%; Puerto Berrio—53.3%; el Banco—32.03%

and Calamar—40.4%. The NFM remained under the 14%

mark in the case of the highest accumulated error as

happened at Puerto Salgar. On the basis of the previous

adjustment estimators, it can be seen that the NMF was

more efficient in the prediction water levels for the

Magdalena River.

CONCLUSIONS

In this study, the comparative applicability and capability of

a neuro-fuzzy model developed for the Magdalena River

water level modeling and prediction against a deterministic

model was investigated through the use of datasets from

four locations. The results obtained suggest that the NMF

method is superior to the DM method in the modeling and

forecasting of the river level. The better performance of

the NFM was confirmed in terms of the statistics for the

prediction error; even more when it is compared with the

deterministic model which presents a higher prediction

error. This fact can be emphasized by observing that the

deterministic model predicts the water level one day ahead,

based on two previous days’ information. On the other

hand, the NFM shows more consistent results over a ten-

day period, based on three previous days’ data. Therefore, it

can be concluded that the NFM has achieved a longer

prediction horizon (10 days) compared to the deterministic

models used before.

In addition the results of the NMF demonstrate that

it can be successfully applied to establish the water level

in the Magdalena River. This model constitutes a powerful

tool which has proved to be very valuable for the prediction

of levels of water at Magdalena River stations, supporting

the decision-making for Magdalena River operators to

pre-determine the weight of shipment for any boat or ferry

on their voyage.
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