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Scour around submarine pipelines remains a largely complex and not yet fully understood

problem. In this study, wave-induced scour around submarine pipelines was investigated. Since

various physical processes occur during the development of a scour hole, the effects of each

process were considered by employing several nondimensional parameters. To find the effective

parameters on equilibrium scour depth, the correlation between independent parameters

(e.g. Keulegan–Carpenter number) and dependent parameter (nondimensional scour depth) were

determined using different experimental data. Then, an Artificial Neural Network (ANNs) approach

was used to develop a more accurate model for prediction of wave-induced scour depth around

submarine pipelines. ANN models with different input parameters including gap to diameter ratio,

Keulegan–Carpenter number, pipe Reynolds number, Shields number, sediment Reynolds number

and boundary layer Reynolds number were trained and evaluated to find the best predictor

model. To develop the ANN models, both holdout and tenfold cross-validation methods were

used. In addition, an existing empirical method was examined. Results show that the empirical

method has a significant error in the prediction of scour depth for the cases with an initial gap

between pipe and seabed. It is also indicated that the ANN models outperform the empirical

method in terms of prediction capability.

Key words | artificial neural networks, backpropagation algorithm, empirical method, submarine

pipelines, wave-induced scour

NOMENCLATURE

The following symbols are used in this paper:

a near-bed wave orbital amplitude

B a function of gap to diameter ratio

D pipe diameter

d50 mean grain diameter

e initial gap between pipe and seabed

e/D gap to diameter ratio

fw friction coefficient

g gravitational acceleration

k pipe roughness

kp relative pipe roughness

ks equivalent sand roughness

ks/a relative bed roughness

KC Keulegan–Carpenter number

m a constant related to the bed material

N number of observations

NH number of hidden layer neurons

N I number of inputs

N TR number of training samples

Oi observed value

Pi predicted value

Re pipe Reynolds number

Re0 boundary layer Reynolds number

Res sediment Reynolds number
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S equilibrium scour depth

SI scatter index

S/D nondimensional scour depth

T wave period

Um maximum value of the undisturbed orbital

velocity of water particles at the bed

u*w wave friction velocity

xi dependent parameter

yi independent parameter

z0 zero level for velocity

d wave boundary layer thickness

m fluid dynamic viscosity

r fluid density

rs sediment density

u Shields parameter

v wave angular frequency

INTRODUCTION

Utilization of submarine pipelines is an efficient way for the

transportation of crude oil and gas continuously from

offshore to onshore areas. Following the installation of

pipelines on the seabed, the flow pattern around it will

change due to the presence of the pipe. Variations of flow

pattern around the pipe result in the formation of different

vortices and turbulence generation in its vicinity (Sumer

et al. 1991). These variations cause an increase in the bed

shear stress and subsequently bring about an increase in the

local sediment transport capacity. Therefore, if the pipelines

lay on an erodible seabed it may face local scouring, leading

to the free-spanning of pipelines. The scour process will

continue until the scour reaches such a level that the bed

shear stress around the pipeline becomes of the order of 1 of

the bed shear stress for the undisturbed flow. At this level,

the depth of the generated pit under the pipeline is called

the equilibrium scour depth (Sumer & Fredsoe 2002).

Scouring and creation of free-spanning may cause failure

of pipelines.

Local scouring around submarine pipelines is very

complex due to the fact that it is the result of different

physical processes which arise from the fluid–structure–

seabed interaction (Zhao & Fernando 2007). Hence it can

be influenced by many environmental parameters such as

flow, soil, etc. In the marine environment, the scour around

pipelines arises from the action of the steady current and

wave on the seabed. It may be classified into two categories:

the clear water and the live bed scour (Sumer & Fredsoe

2002). In the former case, no sediment transport motion

takes place far from the structure, while in the latter case,

the sediment transport prevails over the entire bed.

In the last few decades several experimental studies

have been performed to explore how scour takes place

around submarine pipelines and how it can be predicted.

Most of the previous experimental studies have been

constrained to the scour under steady current (e.g. Mao

1986; Sumer et al. 2001). In comparison with the current-

induced scour, fewer studies were reported on wave-

induced local scour around pipelines. Lucassen (1984),

Sumer & Fredsoe (1990), Cevik & Yuksel (1999), Pu et al.

(2001) and Mousavi et al. (2006) have experimentally

investigated the scour under wave action in the live bed

condition. (Hereafter, Sumer & Fredsoe (1990), Pu et al.

(2001) and Mousavi et al. (2006) are referred to as SF90,

Pe01 and Me06, respectively). According to these studies,

different relationships have been developed to estimate the

equilibrium wave-induced scour depth based on the

Keulegan–Carpenter number (KC) and gap to diameter

ratio (e/D) in live bed conditions.

Numerical simulation of wave-induced scour around a

pipeline is very complex and time-consuming; hence this

kind of study is still very limited (e.g. Liang & Cheng 2005).

Numerical models were mostly developed to simulate the

current-induced scour around pipelines.

In recent years, soft computing tools (e.g. Artificial

Neural Networks (ANNs) and Fuzzy Inference Systems

(FIS)) have been used to simulate several complicated

engineering problems. ANNs are known as flexible model-

ing tools with capabilities of learning the mathematical

mapping between input and output variables of nonlinear

systems. FIS is based on expertise expressed in terms of

“IF–THEN” rules which can be used to predict uncertain

systems. In recent years, ANNs and FISs have been used

to predict the equilibrium scour depth around piles

(Kambekar & Deo 2003; Bateni & Jeng 2007; Bateni et al.

2007a,b) and at culvert outlets (Liriano & Day 2001). These

techniques have also been used in other fields of marine

and coastal engineering such as nearshore process and
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coastal modeling (Ruessink 2005; Chau 2006), wind–wave

prediction (e.g. Deo et al. 2001; Kazeminezhad et al. 2005;

Zhang et al. 2006; Mahjoubi et al. 2008) and ecological

system analysis in coastal waters (Muttil & Chau 2006;

Chau & Muttil 2007).

Since the scour is a result of different physical processes,

it is necessary to investigate the effects of each process by

considering the relevant nondimensional parameters,

whereas the proposed methods in the literature are all

based on KC and e/D. Moreover, the soft computing models

have not been developed as an appropriate predictor model

for estimation of wave-induced scour depth. Therefore, the

main objectives of this study are to identify the important

parameters that affect the equilibrium scour depth and to

develop a suitable ANN-based model for accurate predic-

tion of the equilibrium wave-induced scour depth below

submarine pipelines. To do so, the experimental datasets of

SF90, Pe01 and Me06 are used. First, a correlation-based

sensitivity analysis is performed to identify the governing

nondimensional parameters. Then the accuracy of the

proposed equation by Sumer & Fredsoe (2002), hereafter

termed SF02, is examined. Finally, the ANN technique is

used to find the effects of different nondimensional

parameters on the scour depth and also to develop an

ANN model (based on holdout and tenfold cross-validation

methods) for the prediction of wave-induced scour depth

around submarine pipelines. It should be noted that, in

some previous applications of ANN, the holdout method

has been used for limited data to develop an error estimate

of the models. In this study the holdout and tenfold cross-

validation methods are used for ANN modeling and the

results are compared.

WAVE-INDUCED SCOUR AROUND SUBMARINE

PIPELINE

The process of scour around pipelines laid on a mobile

bed is rather complicated due to the occurrence of

various physical processes arising from the triple inter-

action of fluid–sediment–structure. Figure 1 illustrates a

submarine pipeline placed on the seabed and exposed to

the wave in which D, e and a are the pipe diameter,

initial gap between pipe and seabed and the near-bed

wave orbital amplitude, respectively. It is seen that the

wave is assumed as an oscillatory flow. Generally, wave-

induced sediment transport is controlled by the oscillatory

wave boundary layer. Therefore, in physical modeling of

sediment transport, oscillatory flow is used instead of the

wave (SF90).

Parameters involved

To investigate the wave-induced scour around a pipeline,

the parameters identifying fluid, flow regimes, pipelines and

bed material should be considered; hence the equilibrium

scour depth around a pipeline can be described by the

following functional relationship:

S ¼ fðr;m;Um;T ;D;k; e; rs;d50; gÞ ð1Þ

where r is the fluid density, m is the fluid dynamic viscosity,

Um is the maximum value of the undisturbed orbital velocity

of water particles at the bed, T is the wave period, D is the

pipe diameter, k is the pipe roughness, e is the initial gap

between pipe and bed, rs is the sediment density, d50 is the

mean grain diameter, g is the gravitational acceleration and

S is the equilibrium scour depth. In Equation (1), the effects

of waves were considered by Um and T parameters. In the

nondimensional form, the equilibrium scour depth can be

presented as follows (Sumer et al. 1991):

S

D
¼ f

e

D
;KC;Re; u;k*

� �
ð2Þ

in which KC ¼ UmT =D ¼ 2pa=D is the Keulegan–Carpenter

number, Re ¼ rUmD=m is the pipe Reynolds number, k* ¼

k=D is the relative pipe roughness and u is the Shields

Figure 1 | Definition sketch of pipe placed near the seabed and exposed to

wave/oscillatory flow.
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parameter. The Shields parameter is calculated by the

following equation:

u ¼
u2

*w

ððrs=rÞ2 1Þgd50
ð3Þ

where u*w is the wave friction velocity defined as

(Van Rijn 1993)

u*w ¼

ffiffiffi
fw
2

s
Um ð4Þ

where fw ¼ 1:39ða=z0Þ
20:52 is the friction coefficient (Soulsby

1997), a is the near-bed wave orbital amplitude, z0 ¼ ks=30 is

the zero level for velocity and ks ¼ 2:5d50 is the equivalent

sand roughness (Van Rijn 1993). If the pipe’s surface

is hydraulically smooth, k p is eliminated in Equation (2).

An alternative approach is described later to select the

effective parameters in wave-induced scour depth.

Existing empirical methods

Several experimental studies have been conducted to

recognize the wave-induced scour around submarine

pipelines and to propose an appropriate method to

estimate the equilibrium wave-induced scour depth. SF90

investigated the mentioned phenomenon in wave flumes

and also in U-shaped tubes. Their experiments were

performed for the special conditions in which the sandy

bed was plain, the live bed condition was dominating and

the wave-induced flows were perpendicular to the pipe

axis. They reported a weak influence of both the pipe

Reynolds number and Shields parameter on the equili-

brium scour depth in the live bed condition. SF02

presented the following equation for the prediction of

S/D in live bed conditions, according to their experiments

and the experiments of Lucassen (1984):

S

D
¼ 0:1

ffiffiffiffiffi
KC

p
exp 20:6

e

D

� �
ð5Þ

In accordance with the above equation, the wave-

induced scour depth is influenced strongly by the Keulegan–

Carpenter number and gap to diameter ratio parameter.

Cevik & Yuksel (1999) proposed a formula to estimate

the wave-induced scour around pipelines based on their

experiments and those of the SF90 experiments. Referring

to the SF90 study, they assumed that the effect of the

Shields parameter on the scour depth is very weak and

proposed the following formula for the live bed condition

with no gap between pipe and seabed:

S

D
¼ 0:11KC0:45: ð6Þ

Pe01 also experimentally investigated the scour around

submarine pipelines exposed to oscillatory flow motion.

Their tests were carried out in the U-shaped tube and the

main focuses were on the influence of bed material on the

equilibrium scour depth. They proposed the following

equation for S/D prediction around pipelines in the live

bed condition:

S

D
¼ B:KCm: ð7Þ

where m is a constant related to the bed material (e.g.

m ¼ 3.18 for sandy bed) and B is a function of gap to

diameter ratio (e/D), pipe diameter (D) and bed material.

Me06 also studied this subject in a wave flume and

proposed the following equation for cases with small KC

number in the live bed condition:

S2 e

D
¼ 0:1

ffiffiffiffiffi
KC

p
ð8Þ

As seen, the proposed empirical methods are all based

on the KC number and e/D.

ANALYSES

Dataset

The dataset used in this study comprises the SF90,

Pe01 and Me06 experimental data. The SF90 experiments

were carried out partly in a wave flume (KC , 100)

and partly in an oscillatory U-shaped tube (KC . 100).

Since for the marine pipelines exposed to the wind wave,

the KC number is less than 100 (SF90), the experiments

with KC number less than 100 were selected. The pipe

surface acted as a hydraulically smooth surface and the
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wave-induced current was perpendicular to the pipe in

all experiments. Detailed information about the dataset

is presented in Table 1. The other nondimensional

parameters (e.g. KC, Re) were calculated based on the

equations presented in the section on parameters involved.

Table 2 summarizes the range of the nondimensional

parameters in different experiments. As can be seen, SF90

experiments embrace a wide range of KC, while Me06

experiments are bound to the low KC values, where the

interaction of wave–pipeline is weak. Pe01 experiments

cover a wide range of Re numbers; thereby the order of

the Re number is similar to that of the field.

Effective parameters

In this section the effective nondimensional parameters in

the wave-induced scour around submarine pipelines are

recognized by considering the involved physics. Due to the

existence of various physical processes such as flow–seabed

interaction, flow–structure interaction and sediment trans-

port, the effects of each process should be considered to

achieve an accurate scour model. The way that a pipe is

installed on the seabed, how flow affects the pipe and seabed

and characteristics of the generated boundary layer are the

most important aspects of the wave-induced scour. When a

smooth pipe lies on a plain bed the relevant nondimensional

Table 1 | Full dataset

Data set D (cm) Um (cm/s) T (s) d50 (cm) e/D S/D Data set D (cm) Um (cm/s) T (s) d50 (cm) e/D S/D

SF90 5 9.90 0.90 0.058 0 0.08 Me06 11 19.70 1.92 0.04 0.055 0.13

SF90 5 22.80 1.43 0.058 0 0.28 Me06 11 19.60 1.64 0.04 0.064 0.06

SF90 3 13.70 2.38 0.058 0 0.23 Me06 11 11.00 1.65 0.04 0.055 0.09

SF90 3 27.10 1.23 0.058 0 0.33 Me06 11 14.30 3.21 0.04 0.082 0.04

SF90 3 22.00 1.82 0.058 0 0.37 Me06 6 18.70 1.9 0.04 0 0.29

SF90 3 17.70 2.50 0.018 0 0.50 Me06 11 21.40 2.12 0.04 0.182 0.08

SF90 3 19.90 2.33 0.058 0 0.48 Pe01 2.89 15.29 2.59 0.02 0 0.26

SF90 3 18.40 3.70 0.058 0 0.52 Pe01 2.89 16.85 2.59 0.02 0 0.37

SF90 3 38.80 2.70 0.018 0 0.70 Pe01 2.89 15.18 2.59 0.02 0.290 0.17

SF90 3 27.06 1.22 0.018 0.260 0.34 Pe01 2.89 12.83 2.59 0.02 0 0.22

SF90 3 27.06 1.22 0.018 1.000 0.03 Pe01 2.89 16.96 2.59 0.02 0.690 0.20

SF90 3 25.70 3.13 0.058 1.030 0.22 Pe01 19.1 180.68 2.59 0.02 0 0.55

SF90 3 25.70 3.13 0.058 2.040 0.16 Pe01 19.1 153.39 2.59 0.02 0 0.41

SF90 3 20.90 2.70 0.058 0 0.67 Pe01 19.1 120.20 2.59 0.02 0 0.23

SF90 3 34.70 2.00 0.018 0 0.45 Pe01 19.1 110.62 2.59 0.02 0.490 0.02

SF90 3 25.70 3.13 0.058 0 0.70 Pe01 19.1 141.59 2.59 0.02 0.720 0.04

SF90 2 27.10 1.49 0.018 0 0.60 Pe01 19.1 171.09 2.59 0.02 0.490 0.21

SF90 1 26.50 3.13 0.058 0 1.00 Pe01 19.1 235.25 2.59 0.02 0.995 0.25

SF90 5 25.20 1.19 0.058 0 0.20 Pe01 19.1 171.09 2.59 0.02 0.720 0.22

SF90 3 24.00 4.55 0.058 0 0.70 Pe01 19.1 92.18 2.59 0.02 0 0.11

SF90 3 27.06 1.22 0.018 0.5 0.16 Pe01 19.1 166.66 2.59 0.02 0.490 0.19

SF90 3 27.06 1.22 0.018 0 0.47 Pe01 19.1 159.29 2.59 0.02 0.995 0.11

SF90 1 19.50 2.86 0.058 0 0.95 Pe01 19.1 142.33 2.6 0.02 0.49 0.09

SF90 1 14.70 2.86 0.018 0 0.60 Pe01 19.1 168.88 2.6 0.02 0.995 0.22

SF90 1 25.90 3.57 0.058 0 1.10 Pe01 19.1 134.22 2.6 0.02 0.995 0.03

Me06 11 17.30 1.40 0.04 0 0.21 Pe01 2.89 14.06 2.6 0.02 0 0.32

Me06 11 12.60 2.34 0.04 0.036 0.13 Pe01 2.89 15.62 2.6 0.02 0.69 0.11

Me06 11 23.30 1.37 0.04 0.027 0.0 9
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parameters can be presented by the following relationship:

S

D
¼ f

e

D
;KC;Re; u;Res;Re0;

ks

a

� �
ð9Þ

These parameters are classified as follows: (i) the e/D

parameter describing the position of the pipe in relation to

the seabed; (ii) the KC and Re numbers describing the flow

pattern around the pipelines; (iii) the sediment Reynolds

number, Res ¼ ru*d50=m and u depicting the mutual effects

of flow on the seabed and (iv) the boundary layer

characteristics represented by the boundary layer Reynolds

number, Re0 ¼ rUmd=m and relative bed roughness, ks/a,

(Jonsson 1967) in which d < ð2y =vÞ0:5 and v ¼ 2p=T is the

wave angular frequency. Another definition of boundary

layer Reynolds number which was used in this study is

Re0 ¼ rUma=m (Jonsson 1967). The relative bed roughness

concept is considered in the calculation of the friction

coefficient ( fw) and Shields parameter. Therefore, the

relative bed roughness can be eliminated in Equation (9).

The concluding functional relationship for the equilibrium

nondimensional wave-induced scour depth around sub-

marine pipelines can be written as follows:

S

D
¼ f

e

D
;KC;Re; u;Res;Re0

� �
: ð10Þ

In the above equation the KC number represents the

formation and extension of the wake pattern in oscillatory

motion and the Shields number represents the sediment

transport mechanism.

Data analysis

As seen earlier, the proposed equations for the estimation of

the equilibrium scour depth in the live bed condition

depend mainly on KC and e/D. The effects of other

parameters on the scour depth were assumed to be weak

and negligible in the previous studies. Application of

sensitivity analysis is essential to identify the effective

parameters that affect S/D. To measure the association

between the independent parameters introduced on the

right-hand side of Equation (10) and S/D, correlation-based

sensitivity measures were used in terms of the linear

correlation coefficient (Manache & Melching 2008). The

correlation coefficient was calculated as follows:

R ¼

P
iðxi 2 �xÞðyi 2 �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðxi 2 �xÞ2
P

iðyi 2 �yÞ2
q ð11Þ

in which xi is the dependent parameter, yi is the indepen-

dent parameter and the overbar denotes the mean of

parameters.

Table 3 shows the correlation coefficients between

independent nondimensional parameters (e.g. KC, e/D)

and nondimensional scour depth (S/D). It should be

mentioned that the correlations were calculated between

the logarithm of the dependent parameter and independent

parameters. According to Table 3, the correlation coeffi-

cients between KC number and S/D in the SF90 dataset is

0.83, while in Pe01 and Me06 they are 0.22 and 0.39,

respectively. It is also seen that e/D is correlated signifi-

cantly with the equilibrium scour depth. Besides, there are

considerable correlations between the other nondimen-

sional parameters (e.g. Re, u) and S/D in many cases.

Therefore, the other nondimensional parameters which

represent the mutual effects of flow on structure and seabed

Table 3 | Correlation coefficient between the nondimensional parameters and S/D in

different experimental datasets

Dataset KC e/D Re u Res Re0

SF90 0.83 0.59 0.39 0.49 0.07 0.51

Pe01 0.22 0.54 0.23 0.39 0.19 0.19

Me06 0.39 0.78 0.32 0.41 0.22 0.14

Table 2 | Summary of test conditions in different experimental works

Range of

Data set Reference No. of data KC Re 3 103 u Res Re0 3 103

SF90 Sumer & Fredsoe (1990) 25 2–94 5–12.6 0.035–0.29 2.24–21.2 5.6–259

Pe01 Pu et al. (2001) 21 11–32 3.7–500 0.055–4.1 2.98–22.63 27–9,130

Me06 Mousavi et al. (2006) 9 1.5–6 11.2–25.6 0.04–0.136 6.32–11.55 12.7–61.8
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and the boundary layer characteristics should be considered

in estimation of the equilibrium scour depth. It is worth

mentioning that most of the SF90 experiments were carried

out with e/D ¼ 0, while most of the Pe01 and Me06

experiments were conducted with e/D . 0. This difference

may explain the difference between KC number and S/D

correlations in these different datasets. To investigate this

issue, the dataset was divided into two parts (data points

with e/D ¼ 0 and data points with e/D . 0) and the

correlations between KC number and S/D were calculated

for each part and shown in Table 4. It is readily seen that, as

expected, for the cases with no initial gap (e/D ¼ 0), the KC

number is correlated significantly with S/D.

Regarding the above discussions, it is necessary to

evaluate the accuracy of the empirical equations proposed

for the estimation of S/D. Since the Me06 equation has

been proposed for the low range of KC numbers and the

Pe01 equation has been proposed for the specific pipe

diameters, the SF02 equation which has been presented

based on extensive experiments is evaluated using different

experimental data.

Evaluation of the Sumer and Fredsoe equation

The comparison between measured and predicted nondi-

mensional scour depth is shown in Figure 2. As can be seen,

the SF02 equation overestimates S/D for the low values of

S/D and underestimates it for high values of S/D.

For statistical comparison of predicted and measured

nondimensional scour depth, bias and scatter index were

used (SI):

bias ¼
1

N

XN
i¼1

ðPi 2OiÞ;

SI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðPi 2OiÞ
2

vuut
0
@

1
A= XN

i¼1

Oi

 ! ð12Þ

where Oi is an observed value, Pi is a predicted value and

N is the number of observations.

For a more comprehensive evaluation of the SF02

equation, the error statistics were presented separately for

each dataset (Table 5). It is seen that the SF02 method

slightly underestimates the S/D with a scatter index of

23.1% for the SF90 dataset. It is also evident that this

equation is more appropriate for the cases with no initial

gap between the pipe and seabed. The error statistics of

calculated scour depth for the Pe01 and Me06 datasets

Table 4 | Correlation coefficient between the KC and S/D in different experimental

datasets

e/D No. of data

Correlation between

KC and S/D

¼ 0 30 0.89

.0 25 0.44

Figure 2 | Comparison between measured and predicted S/D by the SF02 equation.

Table 5 | Error statistics of the predicted S/D by the SF02 equation for SF90, Pe01,

Me06 and the full dataset

Dataset e/D No. Average S/D SI (%) Bias

SF90 ¼ 0, .0 25 0.47 23.1 20.044

¼ 0 20 0.55 21 20.067

.0 5 0.18 46.5 0.045

Pe01 ¼ 0, .0 21 0.21 73 0.12

¼ 0 8 0.31 40.1 0.086

.0 13 0.14 114.9 0.149

Me06 ¼ 0, . 0 9 0.12 66.9 0.05

¼ 0 2 0.25 21.04 20.051

.0 7 0.09 101.25 0.079

SF90, Pe01, Me06 ¼ 0, .0 55 0.32 39.26 0.036

¼ 0 30 0.46 24.64 20.025

.0 25 0.14 98.2 0.108
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show that the SF02 equation is not accurate in the

prediction of scour depth when there is an initial gap

between the pipe and seabed. The overall statistical errors

of the SF02 equation for all the datasets shows that it

overestimates the scour depth (bias ¼ 0.036) with a scatter

index of 39.26%. Besides, this method is not accurate

(SI ¼ 98.2%) in the prediction of S/D for the cases with

e/D . 0, while it performs well (SI ¼ 24.64%) for the cases

with e/D ¼ 0.

As discussed before in addition to KC number and e/D,

the other parameters should be considered for estimating

S/D. Evaluation of the SF02 equation, which is based on the

KC number and e/D, indicated that this equation is not very

accurate in the prediction of equilibrium scour depth.

Therefore, it is necessary to develop a wave-induced scour

depth predictor model with all nondimensional parameters.

To do so, the Artificial Neural Network (ANNs) concept

which is described below is used.

MODEL DESIGN FOR PREDICTION OF S/D

Artificial neural networks (ANNs)

The development of artificial neural networks started in the

early middle of the last century to help cognitive scientists

in understanding the complexity of the nervous system

(McCulloch & Pitts 1943). ANNs can be classified in

terms of their topology (e.g. single- and multi-layer

feedforward networks). The multi-layer feedforward net-

works have been applied extensively to solve various

engineering problems in recent years (e.g. Kerh & Yee

2000; Azamathulla et al. 2008). Figure 3 displays the three-

layer feedforward network. As can be seen the network

is composed of three layers which are the input layer,

with neurons representing the input fields, one hidden layer

and an output layer, with a neuron representing the output

field. Each neuron performs a weighted sum of its inputs

and calculates an output using certain predefined transfer

functions. Transfer functions for the hidden neurons are

needed to introduce the nonlinearity into the network.

To train the network, it is fed with a set of input–output

pairs called training data to reproduce the outputs. The

training is done by adjusting the neuron weights and biases

using an optimization algorithm that attempts to minimize

the differences between the network outputs and actual

outputs. Backpropagation is one of the training techniques

usually used for this purpose. After the training process, a

new dataset called testing data is used to measure the

generalization ability of the network and to know how

accurately the network predicts outputs for inputs that are

not used in the training data.

Finding the optimal number of hidden layers and neurons

is an important step in the overall design of ANNs. Increasing

the number of neurons in the hidden layer or adding more

hidden layers to the network leads to low training error but

network generalization degrades and overfitting is occurred

(Geman et al. 1992). When new data (testing data) is

presented to an overfitted network the error is large.

Data for ANN simulations

One of the most important stages in the design of an

ANN model is the data collection and data preparation;

thus the examples for training must be representative of

all the possibilities concerning the application. In this study

the dataset consisting of 55 data points was used to develop

and validate the ANN-based predictor model for the

prediction of S/D.

There are several methods for error estimation such as

holdout and k-fold cross-validation (Stone 1974) methods.

When the amount of data is large, the holdout method,

which partitions all the data into two disjoint subsets

Figure 3 | Three-layer feedforward network.
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(training and testing sets), can be used. This method is used

in the next section by dividing the dataset into two groups.

The first one comprised of 42 data points is used as the

training data and the second one comprised of 13 data

points is used as the testing data. The percentage of the

training and testing data is similar to that of Kambekar &

Deo (2003).

In cases where the data is limited the k-fold cross-

validation can be employed (Witten & Frank 2005). In

k-fold cross-validation the data is split into k approxi-

mately equal partitions and each in turn is used for testing

and the remainder is used for training. Tenfold cross-

validation is used in the relevant section. The dataset is

divided randomly into 10 parts. Each part is held out

in turn and the learning scheme is trained using the

remaining nine-tenths. Then, its error rate is calculated on

the holdout set. The learning procedure is executed a total

of 10 times on different training sets. Finally, the 10 error

estimates are averaged to yield an overall error estimate

(Witten & Frank 2005).

ANN modeling using holdout method

In this study, a three-layer feedforward network with the

sigmoid transfer function in the hidden layer and a linear

transfer function in the output layer was used. The networks

were trained by the backpropagation algorithm. To select an

appropriate architecture, the guidelines advocated by

Hecht-Nielson (1987) and Rogers & Dowla (1994) were

used. Equations (13) and (14) present these guidelines,

respectively:

NH # NI þ 1 ð13Þ

NH #
NTR

NI þ 1
ð14Þ

where NH is the number of hidden layer neurons, N I is the

number of inputs and N TR is the number of training

samples. To avoid overfitting of the ANN, an early stopping

(Heskes 1997) criterion was used in the training process.

The training process of the ANN was stopped when the

performance of the ANN in the testing set started to

decrease. To identify the relative importance of different

phenomena/effective nondimensional parameters, several

ANN models based on subjects mentioned earlier were

developed and evaluated.

In the training process two factors were used to control

the training algorithm’s adjustment of the weights (learning

rate coefficient and momentum factor). A large value of the

learning rate may leads to instability in the training process.

If the learning rate is too small, the network will learn at a

very slow pace. The momentum factor has a smaller effect

on learning speeds. However, it can affect training stability

and promote faster learning for most networks. Higher

values of the momentum factor can help the network escape

from a local minimum.

In this study the best initial learning rate value and

momentum factor were found to be 0.3 and 0.9, respect-

ively. The training process was terminated if 96% of the

samples successfully matched the expected output with the

specified error tolerance (0.01).

ANN model considering flow-structure interaction

The way that a pipe is installed on the seabed and how flow

affects the pipe are represented by the e/D, KC and Re

parameters. These parameters show the vortex generation

and motion behind the pipe (for more details see Sumer &

Fredsoe (1997)). The effects of Re number on S/D has been

assumed weak by other researchers (e.g. SF90), while in the

Figure 4 | Comparison between measured and predicted S/D by the M1 model

(2 £ 3 £ 1) for testing data.
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previous section it was shown that there is a high

correlation between Re and S/D parameters.

First an ANN model was developed with the KC and

e/D as input parameters and S/D as the neuron in the

output layer. The parameters used in the input layer are the

governing parameters in the estimation of S/D in live bed

conditions (Me06, SF90). The number of neurons in the

hidden layer was varied from 2 to 5 to find the best

network topology. Following Ustoorikar & Deo (2008) the

criterion of selecting the best network topology was

considered to be the minimum scatter index between the

actual nondimensional scour depth and the corresponding

predicted values obtained from the trained network. The

best topology for the network with two neurons (KC and

e/D parameters) in the input layer was 2 £ 3 £ 1 (M1

model). The comparison between the measured and

predicted nondimensional scour depths using the M1

model is shown in Figure 4. As can be seen, the predictions

are scattered relative to the measurements, but they are not

significantly biased. The performance of the developed

ANN model is evaluated qualitatively in terms of the bias,

scatter index, correlation coefficient and maximum error

parameters. Table 6 shows the error statistics of the

calculated scour depth for testing data. It can be seen

that the M1 model slightly under-predicts (bias ¼ -0.015)

S/D. In addition, the scatter index for predicted S/D and

the correlation coefficient between the predicted and

measured S/D are 29.38% and 0.94, respectively.

Some of the observed error in the M1 model can be due

to the omitting of other parameters which describe the

flow–structure interaction, i.e. pipe Reynolds number.

Therefore, an ANN model with three neurons in the input

layer (e/D, KC and Re) was trained as the scour depth

predictor. Networks with different numbers of neurons

(from 2 to 7) in the hidden layer were examined and

the best topology was found to be 3 £ 6 £ 1 (M2 model).

Figure 5 displays the comparison between measured and

predicted S/D by the M2 model. The error statistics of the

M2 model for testing data are presented in Table 6. It is

seen that the M2 model underestimates S/D with the

SI ¼ 25.27% and R ¼ 0.95. Comparison between the M1

and M2 statistical errors shows that the M2 model outper-

forms the M1 model. Therefore, it could be inferred that the

Re parameter needs to be considered in the modeling of the

wave-induced scour depth around a submarine pipeline.

ANN model considering different physical processes

In this section the effects of flow–seabed interaction, which

was neglected by the other researchers, were considered

in the development of the scour depth predictor model.

The mutual effects of flow on the seabed were shown by

the Shields parameter and sediment Reynolds number.

Table 6 | Error statistics of the predicted S/D by the ANN-based models and Sumer & Fredsoe (SF02) equation for testing data (holdout method)

Model e/D KC Re u Res Re0 SI (%) Bias R Max. error (%)

SF02 U U 37.82 0.03 0.92 629

M1 U U 29.38 20.015 0.94 193

M2 U U U 25.27 20.035 0.95 49

M3 U U U U U 20.30 0.0002 0.97 50

M4 U U U U U U 16.48 20.01 0.98 45

Figure 5 | Comparison between measured and predicted S/D by the M2 model

(3 £ 6 £ 1) for testing data.
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ANNs with five neurons in the input layer (e/D, KC, Re, u

and Res), different numbers of neuron (from 2 to 11) in the

hidden layer and one neuron (S/D) in the output layer

were trained to find the best topology. The network

with 5 £ 9 £ 1 topology was found to be the best network

(M3 model). Figure 6 shows the comparison between the

measured and predicted S/D using the M3 model. As can be

seen the predictions are not biased. Table 6 shows the error

statistics of the M3 model. The accuracy of the M3 model

(bias ¼ 0.0, SI ¼ 20.30% and R ¼ 0.97) is more than those

of the M1 and M2 models. A comparison between the

accuracies of the M1, M2 and M3 models indicates that

including the u and Res parameters in the model training

increases the accuracy of the trained model.

Finally an ANN-based model was developed by con-

sidering all of the important processes occurring during

development of the scour hole. Therefore, all the par-

ameters presented on the right-hand side of Equation (10),

which represent the mutual effects of flow on pipe and

seabed, and boundary layer characteristics, were used to

develop and train the model. The network consisted of six

neurons in the input layer which were e/D, KC, Re, u, Res

and the boundary layer Reynolds number (Re0). The best

topology for this network was found to be 6 £ 13 £ 1 (M4

model). Comparison between measured and predicted

S/D by the M4 model is illustrated in Figure 7. As shown,

the M4 model performed quite well in prediction of the

S/D. The error statistics of this model in predicting S/D are

shown in Table 6. It can be seen that the M4 model

marginally under-predicts (bias ¼ 20.01) the nondimen-

sional scour depth. The scatter index for predicted S/D and

the correlation coefficient between the predicted and

measured S/D are 16.48% and 0.98, respectively. Compari-

son of the accuracies of the ANN models shows that

utilization of all the parameters introduced in Equation

(10) improves the accuracy of the ANN model. This result

is due to the fact that the scour phenomenon around a

submarine pipeline is composed of different processes and

the effects of all processes should be considered in the

scour depth prediction.

To compare the performance of the developed ANN-

based models with the existing empirical models, nondi-

mensional scour depths were predicted by the SF02

equation (Figure 8). It is seen that this equation over-

predicts the S/D parameter. Table 6 shows the error

statistics of S/D calculated by the SF02 equation. The

scatter index for the predicted S/D by this model is 37.82%.

Although the SF02 and M1 inputs are the same, the

accuracy of the M1 model, which is an ANN-based

model, is higher than that of the SF02 model. This is in

line with the results obtained by Kambekar & Deo (2003)
Figure 6 | Comparison between measured and predicted S/D by the M3 model

(5 £ 9 £ 1) for testing data.

Figure 7 | Comparison between measured and predicted S/D by the M4 model

(6 £ 13 £ 1) for testing data.
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and Bateni et al. (2007a). They found that the ANN-based

models outperform the empirical methods in the prediction

of scour depth around piles.

ANN modeling using tenfold cross-validation

In this section the M1, M2, M3 and M4 models were trained

and evaluated using the tenfold cross-validation method.

Therefore the dataset was equally divided into 10 parts.

The training and testing were carried out 10 times for each

model using one distinct set for testing and the remaining

nine for training. Finally, there were 10 testing sets with

every record appearing in the testing sets once. Table 7

presents the average errors over the 10 testing sets. As can

be seen, the M4 model which contains all related non-

dimensional parameters as input parameters outperforms

the other models. Comparison between Tables 6 and 7

indicates that using the holdout method results in lower

error values. This shows that application of the holdout

method may lead to unrealistic errors. Table 7 also shows

the error statistics of the SF02 equation for all datasets.

Results of M1 and SF02 models show that utilization of

ANN-based models leads to lower error statistics (especially

maximum error). As can be seen, use of important

nondimensional parameters in the ANN model increases

the accuracy in the prediction of S/D. This results in 11.65%

reduction in the average error and 112% reduction in the

maximum error.

To see if the best trained network (M4 model) behaves

as expected from the physical understanding, a parametric

study with varying input variables was carried out. First,

variation of S/D against KC parameter is studied. To do so

the e/D, Re, u, Res and Re0 were considered to be 0, 3000,

0.65, 6 and 10,000, respectively, and the KC parameter was

varied from 2 to 92 (Figure 9). As expected, the scour

depth increases as the KC number increases. Figure 10

displays the variation of S/D against e/D. As can be seen,

the scour depth decreases as the gap to diameter ratio is

increased which is physically accepted. Both these results

are in line with the previous understanding of the scour

process (SF02).

The limitations of ANN models need to be mentioned

as well. Several studies have reported that the ANN model

performs well when it is faced with problems that fall

within the domain of inputs that were used for training.

Therefore, similar to empirical models ANN models cannot

be used for extrapolation. One way around this problem is

to use the widest limits of examples during training. In this

study, to ensure that the developed ANN models do not

have to extrapolate, they were trained based on the widest

limits of nondimensional parameters; hence they are

applicable both for laboratory scale and prototype con-

ditions. This is the main ability and advantage of the

Table 7 | Error statistics of the predicted S/D by the ANN-based models and Sumer & Fredsoe (SF02) equation using tenfold cross-validation method

Model e/D KC Re u Res Re0 SI (%) Bias R Max. error (%)

SF02 U U 39.26 0.036 0.90 1,071

M1 U U 35.43 20.003 0.86 198

M2 U U U 33.47 0.004 0.90 127

M3 U U U U U 27.04 0.012 0.94 109

M4 U U U U U U 23.78 0.009 0.95 86

Figure 8 | Comparison between measured and predicted S/D by the SF02 model for

testing data.
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developed models in comparison with some other models

developed based on dimensional parameters. It should also

be mentioned that employing the original (dimensional)

data rather than the nondimensional data in the training

process may lead to better results in the scour depth

prediction (e.g. Kambekar & Deo 2003; Bateni et al. 2007a).

However, the model trained with laboratory dimensional

data may not be directly applicable in the field.

SUMMARY AND CONCLUSIONS

In this study the equilibrium wave-induced scour depth

around submarine pipelines was studied using the experi-

mental dataset of SF90, Pe01 and Me06. The nondimen-

sional parameters were considered as the model’s inputs

and outputs to be applicable in the field. First, effective

nondimensional parameters were investigated by calculating

the correlation coefficients between independent nondimen-

sional parameters and equilibrium scour depth. Analyses

indicate that, in addition to the KC and e/D parameters,

other nondimensional parameters such as Re have signifi-

cant correlation with S/D. The Sumer & Fredsoe (2002)

equation was examined using different experimental data.

It was found that this equation is relatively accurate in the

cases with no initial gap between pipe and seabed.

To consider all effective parameters in the development

of the scour predictor model, the Artificial Neural Network

technique was used. To develop an error estimate of the

models, the holdout and tenfold cross-validation methods

were used. Different models based on different input

parameters were trained and tested. In the training of each

model the best topology was found by trial and error. Results

showed that the model including the e/D, KC, Re, u, Res and

Re0 parameters in input layers is the most accurate one. The

estimated average error of this model in the prediction of S/D

based on tenfold cross-validation is 23.78% while the error

of the SF02 empirical model is 39.26%. In comparison with

the SF02 equation, the ANN-based models result in lower

maximum error and average error in the prediction of S/D.

One of the limitations of this study is due to the

application of the ANN. One disadvantage of ANN models

is that the optimum neural network parameters as well as

the optimum network geometry (i.e. the number of hidden

layers and the number of nodes per hidden layer) are

problem-dependent and generally have to be found using a

trial-and-error approach (Maier & Dandy 1995). In addition

the rules of operation in ANN models are completely

unknown and it is not possible to convert the neural

structure into known model structures. The other limitation

of this study is the lack of extensive data. Further research

should be aimed at obtaining more physical insight from

soft computing tools such as ANNs using extensive data.
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Figure 9 | Variation of the S/D parameter against the KC number for e/D ¼ 0,

Re ¼ 3,000, u ¼ 0.65, Res ¼ 6 and Re0 ¼ 10,000 using the M4 model.

Figure 10 | Variation of the S/D parameter against the e/D parameter for KC ¼ 20,

Re ¼ 3,000, u ¼ 0.65, Res ¼ 6 and Re0 ¼ 10,000 using the M4 model.
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