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The present paper deals with exploring the use of Artificial Neural Networks (ANN) for forecasting

the Blue Nile river flows in Sudan. Four ANN rainfall–runoff models based on the structure of the

well-known multi-layer perceptron are developed. These models use the rainfall index as a

common external input, with the rainfall index being a weighted sum of the recent and current

rainfall. These models differ in terms of the additional external inputs being used by the model.

The additional inputs are basically the seasonal expectations of both the rainfall index and the

observed discharge. The results show that the model, which uses both the seasonal expectation

of the observed discharge and the rainfall index as additional inputs, has the best performance.

The estimated discharges of this model are further updated using a non-linear Auto-Regressive

Exogenous-input model (NARXM)-ANN river flow forecasting output-updating procedure. In this

way, a real-time river flow forecasting model is developed. The results show that the forecast

updating has significantly enhanced the quality of the discharge forecasts. The results also

indicate that the ANN has considerable potential to be used for river flow forecasting in

developing countries.
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INTRODUCTION

The current paper presents a case study concerned with the

use of a hydroinformatics data-driven modelling tool

(artificial neural network (ANN)) in river flow forecasting

in a developing country (Sudan). This paper demonstrates

how the hydroinformatics modelling technology can be

applied in solving challenging water resources problems in

developing countries. However, hydroinformatics is not

only about modelling technology, albeit being a key

component of hydroinformatics. It is a socio-technology

occupying “the middle ground between water related

physical and natural sciences, information and communi-

cation technology and the social context” (Price & Jemberie

2006). A review of recent advances as well as emergent

directions for future developments in hydroinformatics can

be found in Coulibaly et al. (2009).

River flow forecasting models are usually used as

components in flood forecasting systems which provide

flood warnings. Floods are among the natural disasters

which aremost damaging in terms of economic and life losses.

They account for about one-third of the damages and one-half

of the fatalities attributed to natural disasters (Berz 2000).

Between 1973 and 1997, UNESCO (2005) stated that around

66 million people suffered flood damage worldwide. In the

case of poor and densely populated countries, Berz (2000)

noted that floods continue to cause the largest numbers of

deaths relative to other natural disasters. In developing coun-

tries, floods can have significant impacts on the economy.

In general, natural disasters have disproportionate impacts on

the Gross Domestic Product (GDP) of developing countries

as compared with that of developed countries (UN 2009).
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Flood mitigation can be achieved by adopting structural

and non-structural measures. Implementing large-scale

structural engineering solutions such as river training and

construction of dams and levees can prevent flooding.

Implementing these structural engineering solutions is

usually beyond the means and abilities of many developing

countries. Furthermore, in many countries, the construction

of large scale embankments is regarded as economically

infeasible in addition to being environmentally unsound.

Reduction of flood losses can also be accomplished by

adopting several non-structural measures such as regulating

land use in the flood plains, improving the design of

buildings, river flow forecasting systems, public education,

emergency planning and flood insurance schemes. The cost

of some of these non-structural measures can be cheaper

relative to the large-scale structural engineering solutions

and hence they have a lot of potential use in developing

countries. Although flood insurance protection schemes

would help individuals and communities to recover from

the devastating effects of flooding, such schemes are

virtually nonexistent in many developing countries. IIASA

(2009) reported that “In the developing world, less than 2%

of the costs of catastrophes are absorbed by any form of

insurance, compared to 50% of the costs of catastrophes

covered by insurance in the United States”.

River flow forecasting is usually regarded a valuable and

cost-effective flood mitigation measure either alone or in

combination with other structural or non-structural flood

mitigation measures. River flow forecasting is also con-

sidered as one of the key components of Flood, Forecasting,

Warning and Response (FFWR) systems. These systems can

be viewed as complex socio-technical systems requiring the

tuning of their technical dimensions to suit the require-

ments of at-risk population (customers/users) (Khatibi &

Cluckie 2006). The key components of a typical FFWR

system are: (i) detection of the likelihood of floods forming

using hydro-meterological data, (ii) river flow forecasting

using observed hydro-meteorological data, (iii) warning,

(iv) dissemination and (v) response (cf. Khatibi & Cluckie

2006; Todini 2006). While the river flow forecasting is

important, the “social performance” of the flood warning

dissemination and communication channels is also import-

ant. The social performance (i.e. effectiveness) of the

FFWR systems involves complex relationships between

“the technologies selected, the social characteristics of

the warning recipients and local barriers to warnings i.e.

the local circumstances of the community/individual”

(DEFRA/EA 2005). WMO (2005) provided an excellent

summary about the common problems facing early warning

systems in developing and least developed countries These

problems include: “(i) linkages between the national

meteorological and hydrological services, the emergency

management authorities and the media, (ii) alert mechan-

isms from national authorities to local level, (iii) availability

of national to local emergency policy and preparedness

plans and (iv) education and public outreach programmes

and other capacities that would enable the public to know

how to respond to warnings”.

The focus of the present paper is on the use of non-

structural flood mitigation measures, namely real-time river

flow forecasting in the context of developing countries. The

present paper deals with developing a river flow forecasting

model (i.e. a rainfall–runoff model with an add-on forecast

updating procedure) for the Blue Nile River in Sudan. The

model developed in this paper can be used as the basis of

issuing flood warnings, thereby helping in reducing flood

damages. The Blue Nile is a major tributary of the Nile River

contributing about 60% of its total annual flow. Over the

last three decades floods arising from the Nile River have

become more frequent and more extreme. Major flood

events occurred in 1988, 1994, 1996, 1998, 1999, 2001 and

2003. These more frequent and more extreme floods may be

attributed to El Niño (Eltahir 1996; Said 1999) or may be the

result of global warming. These floods cause considerable

damage to communities living along the river. For example,

the 1988 flood caused the death of 58 persons and left

nearly 2 million people homeless (Chicago Sun-Times 1988).

It also resulted in the outbreak of diseases such as malaria

and diarrhoea with vulnerable groups such as children and

elderly being at high risk.

There are three rainfall–runoff model categories which

can be used as components in river flow forecasting systems

(Wheater et al. 1993; Senbeta et al. 1999; Shamseldin 2006):

(i) metric models, which are also known as empirical black-

box models, (ii) conceptual models, which are also called

explicit soil moisture accounting models, and (iii) mechan-

istic models, which are also referred to as physically based

models. In the context of developing countries and many of
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the developed countries, the first two categories are usually

used in operational river flow forecasting systems. At present,

models of the third category remain mainly as heuristic

research tools due to their intense data requirements. It is

often difficult to fulfil these requirements due to the paucity of

the data and the associated costs needed to obtain the data.

Artificial Neural Network (ANN) models, which are the

focus of the present paper, belong to the first model category.

They are inspired by research into the biological neural

networks. However, in pure systems terminology, they are

basically non-linear data-driven models which provide

powerful solutions to many complex modelling problems.

Similar to models of the first category they require synchro-

nous input–output data for their calibration. Many studies

have demonstrated that the ANNmodels are very successful

in simulating river flows (e.g. Shamseldin 1997; Coulibaly

et al. 2000; Chang & Chen 2001; Dibike & Solomatine 2001;

Shamseldin et al. 2002, 2007; Rajurkar et al. 2004; Goswami

et al. 2005;Dawson et al. 2006;Abrahart et al. 2007; Boucher

et al. 2009; Fernando & Shamseldin 2009; Pramanik &

Panda 2009) and hence worthy of investigation with regard

to river flow forecasting on the Blue Nile River. There is a

limited number of studies dealing with river flow forecasting

on the Blue Nile. Examples of these studies can be found in

Grijsen et al. (1992), Elmahi & O’Connor (1995), Shamseldin

et al. (1999), Shamseldin &O’Connor (2003) and Antar et al.

(2005). Thus, this paper will shed more light on potential

data-driven models which can be used for flood forecasting

on the Blue Nile.

The ANN river flow forecasting models have many

features which make them attractive for use in developing

countries. These features include:

† Rapid development: ANN models are easy to develop, as

they do not require very detailed knowledge about the

physical functioning of the catchment. The key to their

success is the determination of the appropriate external

inputs to the model.

† Rapid execution time: once the ANN models are

calibrated they are fast to run, requiring very little

execution time on a modest PC.

† Parsimony in terms of their data requirements compared

to the other traditional models. In many of the develop-

ing countries, the hydrological data is very sparse.

† Availability of open source codes either free or at a very

cheap rate. For example, the source code of the Stuttgart

Neural Network Simulator is freely available on the Web

(see http://www-ra.informatik.uni-tuebingen.de/SNNS/).

The licence of the Trajan neural network software

package costs around $3000 and it has facilities for code

generation (see www.trajan-software.demon.co.uk). The

availability of open source code would help the in-house

development of river forecasting software and hence

reducing the development cost. The in-house develop-

ment would also help in empowering local institutions

and strengthening their technical capacity.

It is worth noting the above features are not exclusive to

ANN models but are also shared by other metric and

conceptual models. Thus, there are other rival models to the

ANN models which are also appropriate for river flow

forecasting in developing countries.

When implementing a river flow forecasting system in

developing countries careful consideration should be given

to the sustainability of its operation. The whole life cost

analysis of the system would help in this regard. The

technology adopted in the forecasting system should be

appropriate to the prevailing conditions in developing

countries to ensure sustainability. What you will find in

many developing countries is that, in a response to major

flood events, off-the-shelf river flow forecasting systems are

purchased from the developed countries and put into

operation, usually with foreign technical and financial

help. Some of these employed systems are technologically

advanced requiring the purchase and acquisition of data as

well as technical support from third parties. With the on-

going process of “brain drain” of skilled workers from

developing (poor) countries to the developed (rich)

countries and the lack of adequate funds for purchasing

the relevant data and technical support, the sustainability of

such systems is at very high risk.

This paper first develops four ANN rainfall–runoff

models operating in the simulation design mode without

any feedback information from the most recently observed

discharge data. These models use different external inputs

reflecting the recent rainfall history and the seasonality of

the catchment. Having identified an appropriate ANN

rainfall–runoff model, the simulation mode discharges of
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this model are updated using the Non-linear Auto-Regres-

sive Exogenous-Input Model (NARXM-ANN) output

updating procedure developed by Shamseldin & O’Connor

(2001). The operation of this procedure is based on the real-

time external modification of simulation mode discharges of

the ANN rainfall–runoff model without interfering with its

operation. In this way, a real-time river flow forecasting

model is developed providing river flow forecasts for

different lead-times. This real-time forecasting model is

basically the substantive ANN simulation model together

with the add-on NARXM-ANN output updating procedure.

The updating procedure enables the use of feedback

information in the form of the most recently observed

discharge data in order to enhance the discharge estimates

of the substantive model, which differ from the observed

discharges. In broad terms, the addition of an updating

component to the simulation mode results of the rainfall–

runoff model would significantly improve the reliability of

the real-time river flow forecasts. However, as the lead-time

increases, the reliability of the real-time river flow forecasts

would be more dependent on the reliability of the design

mode simulated river flows rather than the flexibility of the

updating procedure. Thus, the approach adopted in this

study for the development of the real-time forecasting

model enables the evaluation of performance of ANN

operating as a rainfall–runoff simulation model and also an

efficient forecast updating procedure. This would enhance

the chance for improving the river flow forecast reliability

for short as well as when the lead-time increases.

The present paper is organized as follows; firstly a brief

description of the study area is given. Secondly, the ANN

rainfall–runoff models used in this study, the method used

for determining their inputs and their calibration/training

are described. Thirdly, the NARXM-ANN output updating

procedure is described. Fourthly, the procedure used in

evaluating model performance is described. Finally, the

results and the conclusions of the study are discussed.

STUDY AREA

The Blue Nile is one of the main tributaries of the River

Nile contributing approximately around 60% of its annual

flow—the annual flow being 84km3. The Blue Nile and its

tributaries arise from the Ethiopian plateau in East Africa

with an elevation range between 2,000–3,000m. The Blue

Nile basin has an area of 324,530km2, which covers most

of Ethiopia west of longitude 408E and between latitudes

98 and 128N (Shahin 1985, p. 42). The climate in the

Ethiopian plateau is regarded as temperate despite being

situated in a tropical region (USBOR 1964, p. 29). In the

upper Blue Nile in Ethiopia, Conway (1997) noted that

annual mean potential evapotranspiration and rainfall range

from 1,800mm to 1,200mm and 924mm to 1,845mm,

respectively.

The Blue Nile River is considered as a trans-boundary

flowing through Ethiopia and Sudan. It starts at Lake Tana

in Ethiopia and flows for 900km to the Sudanese–

Ethiopian border. In Sudan, it joins the White Nile (one

of the main tributaries of the Nile River) at Khartoum

(the capital of Sudan) to form the Nile river. Figure 1 shows

the Blue Nile catchment upstream at Eldiem near the

Sudanese–Ethiopian border.

Figure 1 | The Blue Nile catchment upstream of Eldeim.
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The Blue Nile is a very seasonal river with 80% of

its annual rainfall occurring during the months of

June–September with the peak flow occurring in late

August (see Figure 2). Flood peaks usually occur in late

August and the maximum daily flow can reach a value of

10,000m3/s. The mean annual flow of the Blue Nile River at

Eldeim is about 50 km3; with the annual flow varying

between 70km3 during flood years and 30 km3 during

drought years. The lag time of this catchment (i.e. the time

difference between the peak of the rainfall and the peak of

the discharge hydrograph) varies over the range of 10–20

days, depending on the catchment wetness.

In this study, four years of daily flow values of the Blue

Nile River measured at Eldeim near the Sudanese–

Ethiopian border and the areally averaged rainfall data for

the period 1992–1995 are used. The first three years are

used for model calibration/training while the remaining

year is used for model verification/validation. The flow data

contains a mixture of annual flood peaks of different

magnitudes. The areal average rainfall was obtained using

the data of six rainfall stations (El Sebai 1998). This is a very

coarse rainfall data resolution. However, remote sensing

technology offers tremendous opportunities for improving

the spatial and temporal resolution of the rainfall data in

this catchment (cf. El Sebai 1998; Antar et al. 2005).

THE MULTI-LAYER PERCEPTRON (MLP)

The ANN rainfall models and the output updating pro-

cedure developed in this study are based on the structure of

the multi-layer perceptron (MLP). It is one of the most

popular neural network types which has been extensively

used in hydrological modelling (cf. Maier & Dandy 2000;

Dawson & Wilby 2001). The MLP is simply a nonlinear

input–output model. The structure of the MLP consists of a

network of interconnected neurons (computational units)

linked together by connection pathways. The neurons are

arranged in a cascade of layers, each layer performing a

unique function in the overall operation of the network (see

Figure 3).

The simplest form of the MLP consists of three layers;

input layer, hidden layer and output layer. The more

complex forms have more than one hidden layer which

are very rarely used in hydrological applications as the use

of more than one is hardly ever beneficial (Masters 1993).

Figure 3 shows a schematic diagram of the simple form of

the MLP. As shown in the figure, adjacent layers are

connected by links governing the flow of information. In the

MLP, the information flows only in the feedforward

direction without any feedback links.

The first layer in the MLP is the input layer which

receives the external input vector Xi to the network at each

discrete time period i:

Xi ¼ ðXi;1;Xi;2;…Xi;j; … ;Xi;NÞ
T ð1Þ

where Xi,j is the jth external input for the i-th time period,

N is the number of external inputs and where T denotes the

vector transpose. As each element of the external input

vector is allocated to one of the input neurons, the number

of neurons in this layer is equal to the number of external

inputs N. The input neurons transmit the external input

array into the network without any modifications.

The hidden layer is an intermediate layer between the

input and the output layer. It is called hidden because it has

no direct connections to the external inputs and outputs.Figure 2 | Average annual discharge hydrograph of the Blue Nile River at Eldeim.

Figure 3 | Schematic diagram of the Multi-Layer Perceptron.
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The hidden layer enhances the capability of the network to

deal robustly and efficiently with inherently complex non-

linear modelling problems. The number of neurons (M) in

this layer is usually unknown a priori and it is estimated by a

trial-and-error procedure. Each neuron in the hidden layer

receives the same input vector of N elements from the

neurons of the input layer, as defined by Equation (1). The

input–output transformation in the k-th hidden neuron is

achieved by a mathematical nonlinear transfer function

which can be expressed as

Yi;k ¼ fðyi;kÞ ¼ f
XN
j¼1

wj;kQi;j þwo;k

0
@

1
A ð2Þ

where Yi,k is the output of the kth hidden neuron for the ith

time period, f( ) is the nonlinear transfer function, wj,k is the

connection weight, which is assigned to the connection

pathway between the kth hidden neuron and the jth neuron

in the previous (input) layer and wo,k is the threshold value

of the kth hidden neuron.

The output layer is the last layer in the MLP and its main

role is to produce the final network output. The number of

neurons in the output layer is equal to the number of

elements in the external output array of the network, this

number being unity in the single-output case of the present

study. This single-output neuron receives an input array

Yi ¼ (Yi,1,Yi,2,… ,Yi,M)
T from the previous hidden layer, the

elements of which are the M outputs of the hidden neurons.

The input–output transformation of the output neuron is

similar to that of the hidden neuron. The final network

output Zi for the ith time period is given by

Zi ¼ f
XM
j¼1

WjYi;j þWo

0
@

1
A ð3Þ

whereWj is the connection weight between the jth neuron in

the hidden layer and the single output neuron and Wo is the

neuron threshold value.

The neuron threshold values and the connection

weights between adjacent layers are effectively the par-

ameters of the network which are to be estimated by

training (i.e. calibration).

The same nonlinear mathematical transformation func-

tion is generally used for all of the hidden and output

neurons. Themost widely used nonlinear transfer function in

neural network applications, which is also used in this study,

is the sigmoid function (Blum 1992, p. 39). This function has

an S shape and its range varies between 0 and 1.

As the actual external outputs of the network are

generally outside the bounded range of the neuron transfer

function, then it is necessary to rescale or transform the

actual (i.e. observed) external outputs in such a way as to be

within the bounded output range in order to facilitate the

calibration of the MLP and to make direct comparisons

between the network estimated outputs and the external

rescaled actual outputs. In the present work, the observed

discharge series Qi is rescaled according to the following

linear transformation:

Qsi ¼ 0:1þ 0:75
Qi

Qmax

� �
ð4Þ

where Qsi is the rescaled observed discharge series and

Qmax is the maximum observed discharge in the calibration

period. In this case, the effective bounded range of the

rescaled discharge series Qsi in the calibration period varies

between 0.1 and 0.85. The use of this effective rescaling

range is vital in order to facilitate the calibration process, in

particular when derivative-based optimisation techniques

are used for calibration of the network. This is important to

ensure that the MLP can forecast discharge values that are

greater than those occurring in the calibration period.

DETERMINATION OF THE EXTERNAL INPUTS TO

THE ANN RAINFALL–RUNOFF MODEL

The determination of appropriate external input types to the

ANN model is one of the fundamental keys which enables

the MLP to provide effective solutions to complex model-

ling problems. Similar to other hydrological studies, the

approach used in this study for determining the external

input information is based on the utilisation of prior

hydrological knowledge about the catchment and the use

of a trial-and-error procedure (Shamseldin 1997; Thiruma-

laiah & Deo 2000; Bowden et al. 2005; Parent et al. 2008).

The first input information type used in this study is the

rainfall in the form of the most recent rainfall values over

the memory length (m) of the catchment. These values are
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basically the elements of the rainfall vector Yi defined by

Yi ¼ ðRi;Ri21;Ri22; … ;Ri2mþ1Þ
T ð5Þ

where Ri is the measured rainfall for the ith time period.

Each of the elements can be assigned to one of the neuron

in the input layer. However, if the memory length of the

catchment is large then this will require a similar large

number of input neurons. The use of a large number of

inputs will result in a complex non-parsimonious network

with a large number of parameters to be estimated by

calibration/training and such estimation may not be an

easy task.

In the case of the Blue Nile basin the memory length is

large and hence there is a need for reducing the number of

inputs to the network to obtain a parsimonious ANN

model. In this study, the input reduction is achieved

through the pre-processing of the external inputs using a

linear transformation. As a result of the pre-processing a

rainfall index RIi is considered as the external input factor

to the network instead of the m rainfall values. The rainfall

index is simply a weighted sum of the m rainfall values

obtained in the same manner as the simple linear model.

The rainfall index RIi can be expressed mathematically by

the following equation:

RIi ¼
Xi

j¼i2mþ1

Rjhi2jþ1 ð6Þ

where hj is the jth weight which in the context of the simple

linear model can be viewed as the discrete pulse response

ordinate. The rainfall index (RI) reflects the recent history

of rainfall incidents and it can also be viewed as a crude

index for soil moisture conditions/wetness of the catch-

ment. The estimation of the rainfall index (RI) requires a

knowledge of the numerical values of the ordinates of the

pulse response function. In this study, these ordinates are

obtained in the parametric form, in a similar fashion to

those of the simple linear model using the two-parameter

gamma distribution model proposed by Nash (1957). The

impulse response of the gamma distribution model, h(t), is

given by

hðtÞ ¼
1

KGðnÞ

t

K

� �n21

e2t=K ð7Þ

where G(n) is the gamma function of the variable n. In the

previous equation, n and K are the parameters of the

gamma distribution model of the hj series. However, in real

applications, n and the product nK are usually considered

to be the parameters of the gamma distribution model. This

would facilitate the calibration process as n and nK are less

dependent on each other than n and K (cf. Kachroo &

Liang 1992).

Figure 2 shows that the Blue Nile basin has a very

remarkable seasonality and therefore incorporation of input

information about this seasonality may further improve

the performance of the ANN model. In the present

study, the seasonality is incorporated in the ANN model

by using the seasonal expectation of the discharge sQi and

the corresponding seasonal expectation rainfall index sRIi

as external inputs to the MLP.

According to the forgoing discussion, the MLP can have

a maximum of three external inputs, namely, the rainfall

index, the seasonal expectation rainfall index sRIi and the

seasonal expectation of the discharge sQi. In the present

study, four different ANN models are developed which use

a combination of these three external inputs. These four

different models are referred to in this paper as ANN1

ANN2, ANN3 and ANN4, respectively. Table 1 provides a

summary of the external inputs used by each of these four

models. In this study, the ANN1 model, which only utilises

the rainfall index as input information, is regarded as a

benchmark model against which the performance of the

other complex ANN models which use more input

information can be compared. Thus, it is not the intention

to use the ANN1 model as a serious rainfall–runoff model.

Furthermore, the development of these four models would

help in determining the effects of input information on

model performance.

Table 1 | Summary of the external inputs used by the different ANN models

External input data

Model RI sRIi sQi

ANN1
p

ANN2
p p

ANN3
p p

ANN4
p p p
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CALIBRATION OF THE ANN RAINFALL–RUNOFF

MODELS

The operation of the four ANN models developed in this

study depends on the prior estimation of the numerical

values of the external inputs to the network. As shown in

Table 1 each of the four models uses the rainfall index RIi

as a common input. The calculation of the rainfall index

requires a knowledge of the parameter values of the

gamma distribution model (n and nK). Once the corre-

sponding external inputs to a particular ANN model are

calculated, its operation with a given number of hidden

neurons requires the estimation of the parameter values of

the network. Hence, the calibration of each of the four

ANN models involves the determinations of the para-

meter values of the gamma distribution model (n and

nK) as well as the network parameter values. The

procedure used to calibrate the ANN models is based

on an iterative calibration procedure which was devel-

oped by Shamseldin (1997). The steps involved in this

iterative procedure are:

1. Choose suitable initial estimates for the values of the

parameters of the gamma distribution model in order to

calculate the external inputs to the ANN model (i.e. the

corresponding combination of the rainfall index RIi,

the seasonal expectation of the rainfall index sRIi and

the seasonal expectation of the discharge sQi).

2. Choose suitable initial values of the parameters of the

network (i.e. the connection weights and the neuron

threshold values for the hidden and output neurons) and,

using the conjugate gradient algorithm (see Press et al.

1989), find estimates of the parameter values of the

network by minimising the least-squares objective func-

tion which is the sum of the squares of the differences

between the ANN outputs and the rescaled observed

discharges.

3. Using the ANN model parameter estimates of step 2, use

the simplex method (Nelder & Mead 1965) to refine the

initial estimated values of the parameters of the gamma

distribution model by minimising the same least-squares

objective function.

4. Using the refined estimated values of n and nK obtained

in step 3 as new initial values, return to step 1.

5. Repeat steps 1–4 until there is no improvement in the

overall performance of the neural network as measured

in terms of the least-squares objective function.

THE NON-LINEAR AUTO-REGRESSIVE EXOGENOUS-

INPUT MODEL (NARXM)-ARTIFICIAL NEURAL

NETWORK (ANN) UPDATING PROCEDURE

The essence of the NARXM-ANN updating procedure is

that the simulation mode discharges of the substantive

rainfall–runoff model are used as exogenous inputs to the

NARXM-ANN procedure which is also based on the MLP.

The structure of the MLP used in the NARXM-ANN

procedure is similar to that used when developing the four

ANN rainfall–runoff models. In the case of the NARXM-

ANN model, the MLP has one hidden layer and the

sigmoid function is used as a transfer function for the

hidden and the output neurons. The linear scaling function

given by Equation (4) is also used for rescaling the external

observed discharges to facilitate the calibration of the MLP

and the comparisons between the observed and the

estimated discharges.

In the NARXM-ANN updating procedure, the 1-day

lead-time updated discharge forecast
^̂
Qiþ1ji at time i is

given by

^̂
Qiþ1ji ¼ GðQi;Qi21;………Qiþ12p; Q̂iþ1; Q̂i; …… ;

Q̂iþ12qÞ þ eiþ1 ð8Þ

where G denotes a nonlinear functional relation, Q̂iþ1 is the

simulation mode discharges of the rainfall–runoff model at

time i þ 1, p and q are the orders of the auto-regressive and

the exogenous input parts of the NARXM-ANN procedure

and eiþ1 is the residual error of the updated discharge

forecast. Thus, for the 1-day lead time forecast the external

input array Xi to the NARXM-ANN procedure is basically

Xi ¼ ðQi;Qi21; …… ;Qi2p; Q̂iþ1; Q̂i; …… ; Q̂iþ12qÞ
T consist-

ing of the simulation mode discharges (the exogenous

inputs) and the recently observed discharges.

In operational real-time river forecasting, the NARXM-

ANN updating output procedure can be used on-line to

provide updated discharge estimates for the required
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forecast lead-time (i.e. for the period beyond the current

time for the end of which the forecast is required). This

would require a knowledge of the values of the observed

discharges and the non-updated discharges of the substan-

tive ANN rainfall–runoff model over the lead-time of the

forecast. The non-updated discharges over the lead-time are

obtained from the substantive rainfall–runoff model, using

forecasts of the meteorological input information. However,

in the present work similar to other heuristic research

works on river flow forecasting (e.g. Kachroo & Liang 1992;

WMO 1992), the scenario of perfect input foresight over the

forecast lead-time is adopted in estimating the non-updated

discharges of the substantive rainfall–runoff model.

This choice of input scenario effectively eliminates the

effects of errors in the meteorological forecasts, so that the

performance of the real-time river flow forecasting model

(i.e. the rainfall–runoff model together with the updating

procedure) can be objectively evaluated. If the real-time

forecasting model is tested using forecasts of the input

variables over the lead-time and the model fails, then it

may be quite difficult to attribute this failure to the model

itself or to the poor specification of the input variables over

the lead time. Thus, adopting the perfect input foresight

scenario is a first step towards building reliable real-time

forecasting models.

As the values of the observed discharges over the

forecast lead-time not yet available, estimates of these

observed discharge values are obtained by the recursive

applications of Equation (8). Accordingly, the updated

discharge forecast,
^̂
Qiþlji, at time i, for a lead-time l $ 1, is

given by

^̂
Q

NARXM

iþlji ¼G
�
^̂
Qiþl21ji;

^̂
Qiþl22ji; … ;

^̂
Qiþ1ji;Qi; … ;Qiþl2p;

Q̂iþlji; Q̂iþl21ji; … ; Q̂iþ1ji; Q̂i; Q̂i21; … ; Q̂iþl2q

�
ð9Þ

The calibration of the NARXM-ANN updating pro-

cedure involves the estimation of the number of hidden

neurons, the corresponding parameters of the MLP as well

as the autoregressive (p) and the moving average (q) orders.

In this study, the number of hidden neurons and the values

of these orders are estimated by trial and error. For a fixed

number of hidden neurons and given values of p and q the

NARXM-ANN model is calibrated using the conjugate

gradient method.

EVALUATION OF MODEL PERFORMANCE

The performances of the models developed in this paper are

evaluated using the well-known R 2 model efficiency

criterion suggested byNash & Sutcliffe (1970). This criterion

is closely linked to the least-squares objective function

being expressed as the sum of the squares of the differences

F between the model estimated ~Qi and Qi observed

discharges. The R 2 model efficiency criterion can be

mathematically expressed as

R2 ¼
Fo 2 F

Fo
ð10Þ

where F ¼
P
ðQi 2 ~QiÞ

2 and Fo is the initial sum squares of

differences given by

Fo ¼
X

ðQi 2 �QÞ2 ð11Þ

and �Q is the average of the observed discharge of the chosen

calibration period. The initial sum of squares of errors Fo

can be viewed as a measure of performance of a primitive

model producing a constant estimated discharge equal to the

average of the observed discharge in the calibration period.

Thus, the R 2 criterion is, in essence, a global measure of the

performance of the substantive model relative to that of the

primitive model. A free web resource to calculate the R 2

values can be found at www.hydrotest.org.uk and further

details about this resource are described in Dawson et al.

(2007, 2009).

RESULTS

ANN rainfall–runoff models

The operation of the four ANN models, which are based

on the structure of the MLP, requires the specification of

the number of neurons in the hidden layer. This number

is usually unknown a priori. In the present study, the

optimum number is estimated by a trial-and-error pro-

cedure in which the ANN model is calibrated/trained in
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succession with an increasing number of hidden neurons

using the calibration procedure described earlier in this

paper. The performance of the model is monitored in

each trial using the R 2 model efficiency criterion. The

optimum number of hidden neurons is that beyond which

any subsequent increase in the number of hidden neurons

does not result in significant improvements in model

performance.

The operation of some of these models requires the

estimation of the seasonal expectations of the discharge and

the rainfall index time series. These seasonal expectations

are found by calculating the average daily values for each

day in the year using the data of the calibration period. The

resulting series is then smoothed globally to reduce

sampling fluctuations by the discrete Fourier series using

the first four harmonics. Further details about this smooth-

ing procedure can be found in Salas et al. (1980).

Figure 4 shows a plot of the R 2 values of the four

ANN models in which two and three hidden neurons are

used. Inspection of the figure shows that, in both the

calibration and verification periods, there are no consider-

able improvements in the overall performances of the four

ANN models by increasing the number of hidden neurons

beyond two. This can be taken as a strong indication that

the data used by each model does support more complex

models with several hidden neurons. Hence, the optimum

number of the hidden neurons for these four ANN models

is taken as two.

Table 2 shows the Nash–Sutcliffe R 2(%) for the four

ANN models developed in this study. Examination of the

table shows the R 2 efficiency values in the calibration

period vary between 82.98% and 93.64% while those of the

verification period vary between 72.32% and 87.21%. Not

surprisingly, the ANN1 model which uses the least amount

of external input information (i.e. the rainfall index only)

has the worst model performance results (i.e. lowest R 2

values) among the four models. Likewise, the ANN4 model

which uses the maximum amount of external input

information (i.e. the rainfall index, the seasonal expectation

rainfall index sRIi and the seasonal expectation of the

discharge) has the best performance results (i.e. highest R 2

values) among the four models.

The performance of the ANN2 model, which uses two

external inputs, namely the rainfall index and the seasonal

expectation rainfall index, is not significantly different from

the ANN1 model which only uses the rainfall index as input

information. Thus, the incorporation of the seasonal

expectation rainfall index as an additional external input

does not necessarily yield substantial improvement in

model performance.

The table also shows that the R 2 values of the ANN2

model which uses the rainfall index and seasonal expec-

tation of the discharge are substantially better than those of

the ANN1 model. This demonstrates that the use of the

seasonal expectation of the discharge as an extra external

input leads to significant improvement in model perform-

ance. Furthermore, the table indicates that the performance

of the ANN3 model which uses two external inputs (the

Figure 4 | The R 2 value of the four ANN rainfall–runoff models using two and three

hidden neurons.

Table 2 | The R 2 efficiency values of the four ANN models

R 2(%)

ANN1 ANN2 ANN3 ANN4

Calibration period 82.98 83.7 91.18 93.64

Verification period 72.32 78.04 85.27 87.21
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rainfall index and the seasonal expectation of the discharge)

is better than that of the ANN2 model. Figure 5 shows a plot

of the observed and the ANN4 model estimated discharges

for the verification year. The figure indicates that the ANN4

model overestimates the observed discharges. In the

verification period, the R 2 value of the ANN4 model is

87.21%, which can be regarded as a strong indication of

very good model performance. However, Figure 5 shows

there are many instances where the ANN4 fails to provide

satisfactory estimates of the observed discharges, especially

during the high flood season. This is one of the problems

associated with the use of the numerical indices such as

the R 2 efficiency criterion to evaluate model performance.

In the case of the ANN4 model, it appears this high R 2

value is dominated by the model performance during the

low flow season, which is very long in the case of the Blue

Nile basin. The use of graphical plots such as Figure 5 would

help to identify deficiencies in the model performance

which are not easily detectable from the R 2 results. This

clearly highlights the importance of using both quantitative

(numerical efficiency indices) and qualitative (graphical

plots) criteria for evaluating model performance as rec-

ommended by ASCE (1993).

Updating of the simulation mode estimated discharges

of the rainfall–runoff models using the NARXM-ANN

updating procedure

As the ANN4 rainfall runoff model has the best results its

simulated discharges have been chosen for updating by the

NARXM-ANN updating procedure. As mentioned earlier in

this paper the calibration of the NARXM-ANN updating

procedure requires the specification of the number of

hidden neurons and the values of the autoregressive (p)

and the moving average (q) orders. The number of hidden

neurons and these orders are estimated by a trial-and-error

procedure similar to that used in estimating the hidden

neurons of the ANN rainfall–runoff models. In this case,

the trial-and-error procedure involves iteratively calibrating

the network using combinations of different numbers of

hidden neurons and different order values. It has been

found that the optimum values of the number of hidden

neurons, the autoregressive order and the moving average

order are 2, 1 and 2, respectively.

Table 3 shows the R 2 values for lead 1 to 6 day of the

NARXM-ANN updating procedures applied to the simu-

lation mode discharge of the ANN4 model. The table also

displays the corresponding R 2 values of the naive persist-

ence predictor-updating model (PPM) (i.e. the ‘no-river

flow forecasting-model’ situation). This model considers

that the discharge forecast over the lead-time of any

magnitude is simply equal to the observed discharge at the

time of making the forecast. This naive PPM updating

model is used in this study merely as a benchmark for

comparing the performance of the substantive NARXM-

ANN updating procedure.

Comparison of Tables 2 and 3 shows that the updating

of the simulation mode discharges of the ANN4 rainfall–

runoff model by the NARXM-ANN updating procedures

has substantially improved the corresponding R 2 values of

Figure 5 | Comparison between observed and estimated discharge hydrographs.

Table 3 | The lead-time R 2 (%) efficiency values of the NARXM-ANN and the PPM updating procedures

Calibration period Verification period

Lead-time Lead-time

Model 1-day 2-day 3-day 4-day 5-day 6-day 1-day 2-day 3-day 4-day 5-day 6-day

ARXM 98.25 97.06 96.13 95.72 95.53 95.39 97.80 96.07 94.76 93.78 92.88 92.14

PPM 97.88 95.75 93.2 91.09 89.32 87.67 97.69 95.67 93.89 92.63 91.42 90.31
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the different lead-times for both the calibration and

verification periods.

Further examination of Table 3 indicates the NARXM-

ANN updating procedure, operating on the simulation

mode discharge of the ANN4 model, performs substantially

better than the naive PPM updating procedure for all lead-

times for both the calibration and verification periods.

Furthermore, inspection of Table 3 shows that the lead-

time R 2 efficiency values of the updating procedures

decrease with the increase in the value of the lead-time.

However, the rate of decrease in the R 2 efficiency values of

PMM is higher than that of the NARXM-ANN updating

procedure.

Figure 5 shows a time series plot of the NARXM-ANN

updated discharge forecasts, the simulation mode discharge

of the ANN4 model and the observed discharge. The figure

indicates that the updating of the estimated discharges of

the ANN4 model by the NARXM-ANN output procedure is

very successful.

CONCLUSIONS

In the present study, four Artificial Neural network (ANN)

rainfall–runoff models are developed for the Blue Nile

River in Sudan. A common feature of these four models is

that they are based on the structure of the multi-layer

perceptron (MLP). These models differ in terms of the

external inputs being used by the model. The four models

use the rainfall index as a common external input. The first

model (ANN1) only uses this common external input. Two

of the models (ANN2 and ANN3) use either the seasonal

expectation rainfall index or the seasonal expectation of

the discharge as additional external input information.

However, the fourth remaining model (ANN4) uses both

the seasonal expectation rainfall index and the seasonal

expectation of the discharge as additional external input

information. The results reveal the ANN4 model has the

best performance (i.e. the highest R 2 values) among the four

models developed in this study.

A real-time river forecasting model consisting of the

ANN4 rainfall–runoff model and the add-on NARXM-

ANN output updating procedure is developed in this study.

The results show that the updating of the estimated

discharges of the ANN4 model by the NARXM-ANN

updating procedure significantly enhances the quality of

the discharge forecasts.

The results obtained in this study support the premise

that neural network models have considerable potential

and promise to be used as an alternative approach for river

flow forecasting in developing countries. The results also

show the selection of appropriate external inputs for

the neural network model is very important in its success.

A combination approach based on the utilisation of prior

hydrological knowledge about the catchment and the use of

trial-and-error procedures as adopted in this study can

successfully be used in determining the external inputs to

the neural network model.

In future applications of neural network models to river

flow forecasting in the Blue Nile River consideration should

be given to using different neural network types other that

the MLP and different data-driven models which may lead

to further improvements in the forecasting performance.
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