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Fuzzy Waste Load Allocation Model (FWLAM), developed in an earlier study, derives the optimal

fractional levels, for the base flow conditions, considering the goals of the Pollution Control

Agency (PCA) and dischargers. The Modified Fuzzy Waste Load Allocation Model (MFWLAM)

developed subsequently is a stochastic model and considers the moments (mean, variance

and skewness) of water quality indicators, incorporating uncertainty due to randomness of input

variables along with uncertainty due to imprecision. The risk of low water quality is reduced

significantly by using this modified model, but inclusion of new constraints leads to a low value

of acceptability level, l, interpreted as the maximized minimum satisfaction in the system.

To improve this value, a new model, which is a combination of FWLAM and MFWLAM,

is presented, allowing for some violations in the constraints of MFWLAM. This combined model

is a multiobjective optimization model having the objectives, maximization of acceptability level

and minimization of violation of constraints. Fuzzy multiobjective programming, goal

programming and fuzzy goal programming are used to find the solutions. For the optimization

model, Probabilistic Global Search Lausanne (PGSL) is used as a nonlinear optimization tool.

The methodology is applied to a case study of the Tunga–Bhadra river system in south India.

The model results in a compromised solution of a higher value of acceptability level as compared

to MFWLAM, with a satisfactory value of risk. Thus the goal of risk minimization is achieved with

a comparatively better value of acceptability level.

Key words | conflicting objectives, fuzzy optimization, goal programming, multiobjective

programming, Probabilistic Global Search Lausanne (PGSL), water quality

INTRODUCTION

Waste load allocation (WLA) in streams refers to the

determination of required pollutant treatment levels at a set

of point sources of pollution to ensure that water quality

standards are maintained throughout the stream. Water

quality management problems are characterized by various

types of uncertainties at different stages of the decision-

making process to arrive at the optimal allocation of the

assimilative capacity of the river system. The two types of

uncertainties that influence the decision-making process

are uncertainty due to randomness and uncertainty due

to imprecision. Uncertainty due to randomness arises

mainly due to the random nature of the input variables

used in the water quality simulation model. Uncertainty

due to imprecision or fuzziness is associated with describ-

ing the goals related to water quality and pollutant

abatement.

There are three widely adopted approaches for addres-

sing randomness in water-quality management models

(Takyi & Lence 1999). These are (i) chance-constrained

optimization (Lohani & Thanh 1978, 1979; Burn &

McBean 1985, 1986; Ellis 1987; Fujiwara et al. 1986,

1987), (ii) combined simulation–optimization (Burn 1989;
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Takyi & Lence 1994) and (iii) multiple realization approach

(Burn & Lence 1992; Takyi & Lence 1999). Another type

of uncertainty prominent in the management of water

quality systems is uncertainty due to imprecision or

fuzziness associated with describing the goals related to

water quality and pollutant abatement. Sasikumar &

Mujumdar (1998, 2000) and Mujumdar & Sasikumar

(2002) have addressed the uncertainty due to imprecision

as well as randomness in a multiobjective framework. Fuzzy

logic has been used for water quality management to model

imprecision by Zhu et al. (2009) and Lermontov et al.

(2009). Recently, uncertainty resulting from the inexactness

of parameter values in water quality management models

has been addressed in Karmakar & Mujumdar (2007) and

Nie et al. (2008).

Starting with the FWLAM (Sasikumar & Mujumdar

1998) uncertainty due to randomness is incorporated in

MFWLAM (Ghosh & Mujumdar 2006) by considering

the basic statistics of the water quality indicator in

the optimization model. The model considers the first

three moments along with Chebyshev’s inequality to derive

the optimal fractional removal levels. Inclusion of skewness

and Chebyshev’s inequality in MFWLAM requires two

additional set of constraints. Incorporation of the new

constraints, however, leads to a low value of acceptability

level, l, which is interpreted as the maximized minimum

satisfaction in a system with conflicting objectives.

To improve the acceptability level, l, a multiobjective

model is developed in the present paper, allowing some

violation in the new constraints, considering objectives of

minimization of violations and maximization of accept-

ability level, l. Fuzzy multiobjective programming

(Zimmermann 1978), goal programming and fuzzy goal

programming (Pal et al. 2003) are applied to solve

the problem. A backward finite difference scheme of

transport equation is used for the BOD-DO model. The

basic statistics are derived from Monte Carlo simulation,

which is intrinsic in the optimization model MFWLAM.

Probabilistic Global Search Lausanne (PGSL), a direct

stochastic algorithm for global search, developed by

Raphael & Smith (2000), is used as an optimization tool

for nonlinear optimization. The following sections provide

a brief overview of FWLAM and MFWLAM, based on

which the current work is developed.

FUZZY WASTE LOAD ALLOCATION MODEL

The fuzzy waste load allocation model (FWLAM) devel-

oped by Sasikumar & Mujumdar (1998) forms the basis for

the optimization models developed in this study. The

FWLAM is described using a general river system. The

river consists of a set of dischargers that are allowed to

release pollutants into the river after removing some

fraction of the pollutants. These fractional removal levels

of the pollutants are necessary to maintain an acceptable

water quality condition in the river as prescribed by the

pollution control agency (PCA). The acceptable water

quality condition is ensured by checking the water quality

in terms of water quality indicator levels (e.g. DO

concentration) at a finite number of locations referred

to as checkpoints. The following fuzzy optimization

problem is formulated to take into account the fuzzy

goals of the PCA and dischargers, which are in conflict

with each other:

Maximize l ð1Þ

subject to ðcil 2 cLilÞ=ðc
L
il 2 cDil Þ

h iail

$ l ;i; l ð2Þ

xMimn 2 ximn

� �
= xMimn 2 xL

imn

� �h ibimn

$ l ;i;m;n ð3Þ

cLil # cil # cDil ;i; l ð4Þ

max bxLimn; x
MIN
imn c # ximn # xMAX

imn ;i;m;n ð5Þ

0 # l # 1 ð6Þ

where cil is the concentration level of water quality

indicator i at the checkpoint l of the river system. The

PCA sets a desirable level, cDil and a minimum permissible

level, cLil, for the water quality indicator i at the checkpoint

l (cDil # cLil) which form the bounds of cil as shown in crisp

constraint (4). Similarly, ximn is the fractional removal level

of the pollutant n from the discharger m to control the water

quality indicator i in the river system. The aspiration level

and maximum fractional removal level acceptable to the

discharger m with respect to ximn are represented as xLimn

and xMimn, respectively. The PCA imposes minimum frac-

tional removal levels that are also expressed as the lower

bounds, xMIN
imn in constraint (5). Constraint (2) presents the

fuzzified goal of PCA, which is a representation of the fuzzy
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statement “the higher the water quality, the better the

satisfaction of the PCA”. The membership function pre-

sented in the left-hand side of constraint (2) may be

interpreted as the variation of satisfaction level of the

pollution control agency with respect to the water quality

indicator concentration, cil. The satisfaction of the pollution

control agency increases as the concentration level, cil, of

the water quality indicator i at the checkpoint l approaches

the desirable limit, cDil , starting with the minimum permiss-

ible level, cLil . The exponent ail defines the shape of the

membership function and is decided by the pollution

control agency. Constraint (3) presents the fuzzified goal

of the dischargers with the membership function, which

may be interpreted as the variation of the satisfaction level

of the discharger m in treating the pollutant n to control the

water quality indicator i in the river system. The fuzzy

constraint (3) can be treated as the mathematical represen-

tation of the statement “the lower the treatment, the better

the satisfaction of the dischargers”. The exponent bimn

defines the shape of the membership function, and is

decided by the discharger m. The fuzzy constraints (2) and

(3) are in conflict with each other. The decision variables

are the fractional removal levels of different dischargers and

the acceptability level l. The exponents ail and bimn,

appearing in constraints (2) and (3), respectively, are non-

zero positive real numbers. Assignment of numerical values

to these exponents is subject to the desired shape of the

membership functions and may be chosen appropriately by

the decision-maker. In the present study the value of the

exponent is selected as 1 for deriving the linear membership

function. The concentration of water quality indicator cil in

constraints (2) and (4) is determined using a water quality

simulation model.

MODIFIED FUZZY WASTE LOAD ALLOCATION

MODEL

The Modified Fuzzy Waste Load Allocation Model

(MFWLAM) (Ghosh & Mujumdar 2005, 2006) incorporates

randomness of input variables by introducing mean,

variance and skewness of the water quality indicator. The

goal of this model is not only to determine the fractional

removal levels of the effluents considering the aspirations

and conflicting objectives of the pollution control agency

and dischargers, but also to improve the water quality by

incorporating the skewness of the probability density

function of the water quality indicator.

MFWLAM does not consider the base values of the

input variables. It is a stochastic optimization model that

includes the moments of the distribution. The model is

based on fuzzy decision theory as does FWLAM. To

improve the water quality, the membership function of the

skewness of the water quality indicator is also incorporated

in the model. The concept, “the higher the skewness the

better” or “the higher the skewness the worse” is modeled

through fuzzy logic by choosing appropriate membership

functions for the skewness resulting from optimization. The

nature of the membership function for skewness is selected

depending on the water quality indicator. In the higher

range of Dissolved Oxygen (DO) concentration, for

example, a high frequency is desired and thus negative

skewness is preferred for DO (Figure 1). A non-increasing

membership function is thus assumed for the skewness of

DO. Similarly for BOD, high frequency is desired in the

lower range of BOD values and thus positive skewness is

preferred. A non-decreasing membership function is used

for BOD.

The bounds of the water quality indicator are

determined from Chebyshev’s inequality. According to

Chebyshev’s inequality, the proportion of observations

lying k standard deviation outside the mean value is at

most 1/k 2, which can be mathematically stated by

P Z2 �Z
�� �� $ ks
� �

#
1

k2
ð7Þ

where Z ¼ a random variable; �Z ¼ mean value of Z;

s ¼ standard deviation and k $ 0.

Figure 1 | Skewness of distribution of water quality indicators.
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From Chebyshev’s inequality:

P Z # �Z2 ks
� �

þ P Z $ �Zþ ks
� �

#
1

k2
ð8Þ

P Z # �Z2 ks
� �

#
1

k2
: ð9Þ

Replacing Z by the water quality indicator cil:

P cil # �cil 2 kscil

� �
#

1

k2
;i; l ð10Þ

In the present model the lower bound of the water

quality indicator is modified as follows:

cLil # �cil 2 kscil

� �
;i; l: ð11Þ

This ensures that the probability of water quality

indicator level less than the acceptable level set by PCA is

at most 1/k 2:

P cil # cLil

� �
#

1

k2
;i; l: ð12Þ

Finally the MAX–MIN formulation of the model can be

given by

Maximize l ð13Þ

subject to �cil 2 cLil

� �
= cLil 2 cDil

� �h iail

$ l ;i; l ð14Þ

xMimn 2 ximn

� �
= xMimn 2 xLimn

� �h ibimn

$ l ;i;m;n ð15Þ

m scil
� �

$ l ;i; l ð16Þ

cLil # �cil 2 kscil

� �
;i; l ð17Þ

�cil # cDil ;i; l ð18Þ

max bxLimn; x
MIN
imn c # ximn # xMAX

imn ;i;m;n ð19Þ

0 # l # 1 ð20Þ

where mðscil Þ ¼ membership function for the skewness of

water quality indicator i at checkpoint l. The DO values

generated with Monte Carlo simulations for a single

checkpoint are used for the calculation of the skewness of

DO at that checkpoint. For the solution of the water quality

simulation model a backward finite difference method

is used. The probability density function of the water

quality indicator is derived from Monte Carlo simulations.

For nonlinear optimization Probabilistic Global Search

Lausanne (PGSL), a global search algorithm, is applied.

Details of the algorithm may be found in Raphael &

Smith (2003).

COMBINATION OF TWO MODELS: A

MULTIOBJECTIVE APPROACH

In MFWLAM, some of the constraints of FWLAM are

modified and new constraints are included. The constraints

(2) and (4) are modified to (14) and (18). As the bias

(difference between the base value obtained from the

deterministic simulation model and the simulated mean

obtained from Monte Carlo simulation) is very small for

water quality indicators (Subbarao et al. 2004), constraints

(14) and (18) are quite similar to (2) and (4) of FWLAM and

thus will not make any difference to the results. But

inclusion of extra constraints for the membership function

for the skewness (constraint (16)) and Chebyshev’s inequal-

ity (constraint (17)) lead to a low value of acceptability

level. To satisfy the fuzzy constraints dealing with the

membership function of skewness, l will take a lower value.

Due to the inclusion of Chebyshev’s inequality the

fractional removal level will increase which in turn reduces

the value of l. In the present model, allowing some

violations in the above-mentioned two constraints, a

multiobjective programming technique is developed to

improve the l value with minimum violations of the new

constraints. The model has two objectives: (i) maximization

of the acceptability level and (ii) minimization of the

violation of the two constraints (16) and (17). These two

objective functions are conflicting with each other as the

consideration of constraints (16) and (17) reduces the value

of the acceptability level. The formulation of the model can

be given by

Maximize l ð21Þ
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Minimize v1 ð22Þ

Minimize v2 ð23Þ

subject to �cil 2 cLil

� �
= cLil 2 cDil

� �h iail

$ l ;i; l ð24Þ

xMimn 2 ximn

� �
= xMimn 2 xLimn

� �h ibimn

$ l ;i;m;n ð25Þ

cil # cDil ;i; l ð26Þ

max bxLimn; x
MIN
imb c # ximn # xMAX

imn ;i;m;n ð27Þ

0 # l # 1 ð28Þ

where v1 is the violation of constraint (16) and is given by

v1 ¼
l2 m scil

� �
when l2 m scil

� �� �
$ 0

0 else

8<
: ð29Þ

Similarly, v2 is the violation of constraint (17) and

is given by

v2 ¼
cLil 2 ð�cil 2 kscil Þ when cLil 2 ð�cil 2 kscil Þ

� �
$ 0

0 else

8<
:

ð30Þ

As the newly introduced two constraints (16) and (17)

are relaxed in the model, it will lead to a higher value of

minimum acceptability level as compared to MFWLAM.

Inclusion of the objective functions of minimization

of violations of the two constraints will also lead to

better water quality as compared to the FWLAM, as the

skewness of water quality and Chebyshev’s inequality are

now involved in the model. Different multiobjective

programming techniques are used to solve the problem.

Fuzzy multiobjective programming (FMOP), goal

programming and fuzzy goal programming are used in the

present study. For the water quality simulation a finite

backwards difference technique (Chapra 1997) is used.

PGSL (Raphael & Smith 2000, 2003; Domer et al. 2003) is

used to solve the nonlinear optimization problem, which is

based on the assumption that better sets of points are more

likely to be found in the neighborhood of good sets of

points, therefore intensifying the search in regions that

contain good solution (Raphael & Smith 2003). Tests on

benchmark problems having multi-parameter nonlinear

objective functions revealed that PGSL performs better

than Genetic Algorithm and advanced algorithms for

simulated annealing (Raphael & Smith 2003).

The PGSL algorithm consists of four nested cycles:

sampling cycle, probability updating cycle, focusing cycle

and subdomain cycle. In the sampling cycle a number of

points (say NSC) are generated randomly by generating a

value for each variable according to the probability density

function (pdf). Among them the best sample is selected. In a

probability updating cycle the sampling cycle is invoked for

a number of times (say NPUC). After each iteration, the pdf

of each variable is modified. The interval containing the best

solution is first selected and then the probability of that

interval is multiplied by a factor greater than 1. The pdf thus

generated is then modified to make the area under the

density function equal to unity. This ensures that the

sampling frequencies in regions containing good points

are increased. In a focusing cycle, the probability updating

cycle is repeated for NFC times. After each iteration, the

search is increasingly focused on the interval containing the

current best point. The interval containing the best point is

divided into uniform subintervals. 50% probability is

assigned to this interval. The remaining probability is then

distributed to the region outside this interval in such a way

so that the pdf decays exponentially from the best interval.

In the subdomain cycle, the focusing cycle is repeated

NSDC times and, at the end of each iteration, the current

search space is modified. In the beginning the entire space is

searched, but in subsequent iterations a subdomain is

selected for the search. The size of the subdomain decreases

gradually and the solution converges to a point. PGSL is

used in the present study with a penalty function (Ghosh &

Mujumdar 2006) for constrained optimization. More details

on this algorithm may be found in Raphael & Smith (2003).

AN APPLICATION

Application of the model is illustrated through a case study

of the Tunga–Bhadra river system shown schematically in

Figure 2. Details of the river system, effluent data, stream-

flow data and discretization may be found in Ghosh &

Mujumdar (2006). The water quality simulation model is a

finite-difference-based BOD-DO model (Chapra 1997).
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The uncertainty information of the basic variables is taken

from Brown & Barnwell (1987) and Subbarao et al. (2004).

Based on the literature (Fujiwara et al. 1987; Burn 1989;

Melching & Yoon 1996; de Azevedo et al. 2000; Subbarao

et al. 2004), all the input variables except headwater flow

are assumed to follow a normal distribution for the purpose

of analysis. A log-normal distribution is used for the

headwater flow. A minimum fraction removal level of

35% and a maximum treatment level of 90% are assumed

for the dischargers. Aspiration level, xLimn, and maximum

permissible level, xMimn, of the dischargers are thus set to 35%

and 90%, respectively. The maximum treatment level is

imposed considering the technological constraints, whereas

a minimum treatment level is imposed to ensure better

quality conditions.

FWLAM is applied to the case study to derive the

optimal fractional removal level (with ail ¼ 1 and bimn ¼ 1),

for the deterministic condition considering only the mean

values of the input variables. In MFWLAM, the uncertainty

analysis is performed to derive the mean, standard deviation

and skewness coefficient of the water quality indicator with

2,000 numbers of Monte Carlo Simulations (MCS).

Multiobjective programming: background

If f(y) is a real-valued function defined on R
n, a multi-

objective model can be defined by

Max=Min{Z1;Z2; … ;Zn} ð31Þ

where, Zj ¼ fj(y1, y2, y3, … ,yk) subject to

M ¼ Y [ R
n; grðYÞ # 0

� �
: ð32Þ

A vector Y p is said to be an efficient solution for the

problem, where the objective functions are to be minimized,

iff there is no Y [ M such that fj(Y) # fj(Y p) for each j ¼ 1,

2, … , n with strict inequality for at least one j (Youness

1995). The different solution techniques for multiobjective

programming are discussed in the following subsections.

Fuzzy multiobjective programming

Fuzzy multiobjective programming, developed by

Zimmermann (1978), is based on the choice of appropriate

membership functions for the objective functions. In this

method first the model is solved for each of the objective

functions at a time to derive the pay-off matrix. The pay-off

matrix can be defined as the matrix which contains the

solution for all the objective functions resulting from

different runs of the multiobjective optimization model

considering each of the objectives at a time. The ideal points

(diagonal elements) are the best values of the objective

functions. From the elements of the matrix, other than the

diagonals, the worst values are selected for the objective

functions. Using the best and worst values, appropriate

membership functions are developed, assigning highest

membership values to the best and lowest membership

values to the worst. Finally the solutions are obtained by

Figure 2 | Schematic diagram of the Tunga–Bhadra river system.
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solving the following model:

Maximize 1 ð33Þ

subject to mðZjÞ $ 1 ;j ð34Þ

M ¼ Y [ R
n; grðYÞ # 0

� �
: ð35Þ

In this model a new variable, overall acceptability level

(1), is introduced, making this less than or equal to the

membership functions of the objectives using the fuzzy

constraint (34). The objective is to maximize the overall

acceptability level, which in turn finds out the non-inferior

solution, making values of both the objectives as close as

possible to their best values without violating the

constraints.

The derivation of the best and worst values objective

functions for the present study is as follows:

1. The solution of FWLAM gives the value of l as 0.423,

which is the best value of l. As the constraints, whose

violations are to be minimized, and which are respon-

sible for a lower value of l, are not considered in

FWLAM, it gives the best value of l.

2. The corresponding violation value for FWLAM will be

the worst (maximum) value of violations. The worst

values of v1 and v2 are 0.466 and 0.154, respectively.

3. The solution of MFWLAM gives the worst value of l, as

in this model, the inclusion of constraints reduces the

minimum acceptability level, l. The violation values are

0 for MFWLAM as the solution considers the new

constraints. These are the best values of v1 and v2. The

best and worst values thus derived are used to get

appropriate membership functions. For the l value a

non-decreasing membership function is used as the

model is maximizing l:

ml ¼ ðl2 l2Þ=ðlþ 2 l2Þ
� 	F

ð36Þ

where ml ¼ membership function for l, l þ ¼ best value of

l and l 2 ¼ worst value of l.

Similarly, the violations at non-increasing membership

functions are used because the objective is to minimize the

violations of constraints:

mv1
¼ v21 2 v1

� �
= v21 2 vþ1
� �� 	h

ð37Þ

where mv1
¼ membership function for v1, vþ1 ¼ best value

of v1 and v21 ¼ worst value of v1:

mv2
¼ v22 2 v2

� �
= v22 2 vþ2
� �� 	h

ð38Þ

where mv2
¼ membership function for v1, vþ2 ¼ best value

of v2 and v22 ¼ worst value of v2.

The exponents, F and h, appearing in constraints (36),

(37) and (38), are nonzero positive real numbers. Assign-

ment of numerical values to these exponents is subject to

the desired shape of the membership functions and may be

chosen appropriately by the decision-maker. Finally the

following MAX–MIN multiobjective programming formu-

lation is developed:

Maximize 1 ð39Þ

subject to l2 l2ð Þ= lþ 2 l2
� �� 	F

$ 1 ð40Þ

v21 2 v1

� �
= v21 2 vþ1
� �� 	h

$ 1 ð41Þ

v22 2 v2

� �
= v22 2 vþ2
� �� 	h

$ 1 ð42Þ

�cil 2 cLil

� �
= cLil 2 cDil

� �h iail

$ l ;i; l ð43Þ

xMimn 2 ximn

� �
= xMimn 2 xLimn

� �h iblmn

$ l ;i;m;n ð44Þ

cil # cDil ;i; l ð45Þ

max bxLimn; x
MIN
imn c # ximn # xMAX

imn ;i;m;n ð46Þ

0 # l # 1 ð47Þ

0 # 1 # 1: ð48Þ

In the present model a new variable overall accept-

ability level (1) is introduced, making this less than or equal

to the membership functions of the objectives using the
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fuzzy constraints ((40), (41) and (42)). The objective is to

maximize the overall acceptability level, which in turn finds

out the non-inferior solution, making all the objectives as

best as possible.

Goal programming

Goal programming is a technique often used in engineering

design activities primarily to find a compromised solution

which will simultaneously satisfy a number of design goals.

In this technique, the best values of the objective function

are set to the target of the objective functions. The goal is to

minimize the deviation of objective functions from their

target. To minimize the deviations a MIN–MAX formu-

lation is developed (Deb 1998). The resulting formulation for

the problem stated in Equations (31) and (32) is as follows:

Minimized ð49Þ

subject to zpj þ dnj # dj ;j ð50Þ

fjðYÞ2 pj þ nj ¼ tj ;j ð51Þ

nj;pj $ 0 ;j ð52Þ

M ¼ Y [ R
n; grðYÞ # 0

� �
: ð53Þ

Here, the parameter d becomes the maximum deviation

in any goal from the corresponding target t. Minimization of

d leads to minimization of all the deviations. For the

objective function of maximizing l, the p value does not

exist in the present case, as the resulting solution will always

be less than the best or maximum value. Similarly for v1 and

v2, an n value does not exist, as the resulting solution will

always be greater than the best (minimum) value. The

weights z and d are set to 1, in Equation (50). Finally the

following model is formulated:

Minimized ð54Þ

subject to n1 # d ð55Þ

p2 # d ð56Þ

p3 # d ð57Þ

lþ n1 ¼ lþ ð58Þ

v1 2 p2 ¼ vþ1 ð59Þ

v2 2 p3 ¼ vþ2 ð60Þ

�cil 2 cLil

� �
= cLil 2 cDil

� �h iail

$ l ;i; l ð61Þ

xMimn 2 ximn

� �
= xMimn 2 xLimn

� �h ibimn

$ l ;i;m;n ð62Þ

cil # cDil ;i; l ð63Þ

max bxLimn; x
MIN
imn c # ximn # xMAX

imn ;i;m;n ð64Þ

0 # l # 1: ð65Þ

The MIN–MAX model of goal programming thus

derived is used in the present analysis.

Fuzzy goal programming

Fuzzy goal programming (Pal et al. 2003) is basically a

combination of goal programming and fuzzy multiobjective

programming. As FMOP, first the pay-off matrix is derived

for the best and worst values of objective functions Zj. In the

field of fuzzy programming, the fuzzy goals are character-

ized by their associated membership functions m(Zj) and

these memberships are derived as similar to the technique

used in fuzzy multiobjective programming.

Now, in a fuzzy decision environment, the achievement

of the objective goals to their aspired levels to the extent

possible is actually represented by the possible achievement

of their respective membership values to the highest degree.

Regarding this aspect of fuzzy programming problems, a

goal programming approach seems to be most appropriate

for the problem. Finally, the following fuzzy goal program-

ming model is formulated, for the problem stated in
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Equations (31) and (32):

Minimize
X

ujdj ð66Þ

subject to mðZjÞ þ dj ¼ 1 ;j ð67Þ

dj $ 0 ;j ð68Þ

M ¼ Y [ R
n; grðYÞ # 0

� �
ð69Þ

where the objective function represents the fuzzy achieve-

ment function consisting of the weighted under deviational

variables, where the numerical weights uj($0), represent

the relative importance of achieving the aspired levels of the

respective fuzzy goals subject to the constraints set in

the decision situation. To assess the relative importance

of the fuzzy goals properly, the weighting scheme suggested

by Mohamed (1997) can be used to assign the values to uj.

The values of weights uj, used in the present study as

suggested by Mohamed (1997), are given below:

uj ¼
1

bj 2wj

���
���

;j ð70Þ

where bj and wj are the best and worst values of the jth

objective, respectively.

In the present study, suitable membership functions are

assumed as fuzzy multiobjective programming (Equations

(36), (37) and (38)). The targets of all the membership

functions are set to 1. The objective is to minimize the

weighted deviation from the target of each objective

functions to derive the optimal fractional removal level.

The model is as follows:

Minimize u1 £ d1 þ u2 £ d2 þ u3 £ d3

� �
ð71Þ

subject to ml þ d1 ¼ 1 ð72Þ

mv1
þ d2 ¼ 1 ð73Þ

mv2
þ d3 ¼ 1 ð74Þ

�cil 2 cLil

� �
= cLil 2 cDil

� �h iail

$ l ;i; l ð75Þ

xMimn 2 ximn

� �
= xNimn 2 xLimn

� �h ibimn

$ l ;i;m;n ð76Þ

cil # cDil ;i; l ð77Þ

max bxLimn; x
MIN
imn c # ximn # xMAX

imn ;i;m;n ð78Þ

0 # l # 1: ð79Þ

The value of weights (uj, j ¼ 1,2,3) can be derived from

Equation (70). An effort has been made to make the

membership function values of different objectives as close

as to 1 to obtain a non-inferior solution for the multi-

objective model. The major advantage of this model is that

it’s a goal programming which considers the fuzzy member-

ship functions, and the weights to the goals are

predetermined.

RESULTS AND DISCUSSION

The PGSL method is used as an optimization tool to solve

the nonlinear problem. Two sample cycles, 1 probability

updating cycle, 80 focusing cycles and 30 subdomain cycles

have been used in the present analysis.

The results of FWLAM and MFWLAM are shown in

Table 1. Due to the inclusion of new constraints (16) and

(17) in MFWLAM the l value is decreased significantly,

with an increase of fractional removal levels. In FWLAM

the l value is 0.423, but in MFWLAM it is reduced to 0.219.

The constraints for skewness and Chebyshev’s inequality

Table 1 | Optimal fractional removal level obtained from Modified Fuzzy Waste Load

Allocation Model (MFWLAM)

FWLAM MFWLAM

l 0.423 0.219

x1 0.667 0.779

x2 0.665 0.778

x3 0.624 0.758

x4 0.555 0.773

x5 0.437 0.745

x6 0.567 0.736

x7 0.448 0.778

x8 0.603 0.767
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have increased the DO level with an increase in the

fractional removal level of dischargers for MFWLAM.

Here for comparison purposes the fuzzy risk of low water

quality of low water quality (Subbarao et al. 2004) is taken

as a measure of the performance of the model. Fuzzy risk is

defined as the probability of a fuzzy event of low water

quality. Denoting the fuzzy set of low water quality, DO

concentration and fuzzy risk of low water quality by Wl, cl

and rl, respectively, the fuzzy risk is rewritten in discrete

form as

rl ¼
XMIN½cmanl

;cD
l
�

cminl

mWl
ðclÞpðclÞ ð80Þ

where cminl
and cmaxl

are the minimum and maximum

concentration levels of DO obtained from MCS at check-

point l. The subscript i for the water quality indicator may

be added in Equation (80) in the case of multiple water

quality indicators. A typical membership function of low

water quality, mWl
cl
� �

, may be expressed as

mWl
ðclÞ ¼ cDl 2 cl

� �
= cDl 2 cLl

� �h i
ð81Þ

It is possible to reduce the fuzzy risk significantly by

using MFWLAM. At locations 1–3 and 2–3 risks are

reduced by 8.09% and 13.37%, respectively (Table 2). In the

last three reaches the risks are reduced by 4.47%, 5.48% and

6.71%. For getting a compromise solution having a l value

higher than that of MFWLAM, and the risk value lower

than that of FWLAM, a combination of the two models

are used.

In the fuzzy multiobjective programming technique,

appropriate membership functions have been assumed for

the objective functions (Equations (36), (37) and (38)). The

problem is solved for three different values of w and h; 0.8,

1 and 1.25. Taking all the combinations, nine sets of analysis

have been performed in the present study. As all the

membership functions are greater than or equal to 1, so the

minimum of the membership function values of objective

functions are taken as 1 (overall satisfaction level).

Table 3 shows the fractional removal levels obtained

from the combined model for different values of w and h. For

w ¼ 1 and h ¼ 1, the l value is 0.336, whereas in MFWLAM

it was as low as 0.219. So it is possible to increase the

minimum acceptability level by using the combined model.

Table 4 shows the risk values at different checkpoints. At

the first two reaches the risk is reduced by 3.50% and 5.80%

and at the last three reaches the risk is reduced by 2.39%,

3.00% and 3.73% as compared to FWLAM. So, using this

Table 2 | Statistics of DO concentration and fuzzy risk at checkpoints based on FWLAM and MFWLAM

Check

points

FWLAM MFWLAM

Mean

Standard

deviation. Skew-ness Fuzzy risk (%) Mean

Standard

deviation. Skew-ness Fuzzy risk (%)

1 6.18 0.32 2.17 37.83 6.46 0.30 1.07 29.74

2 5.42 0.40 4.02 59.44 5.89 0.36 2.78 46.07

3 6.75 0.87 25.63 19.95 6.78 0.81 26.01 18.88

4 6.61 0.24 21.03 57.16 6.62 0.25 20.99 56.30

5 6.92 0.34 22.50 35.16 6.96 0.33 22.56 32.48

6 7.05 0.37 23.01 26.77 7.07 0.36 22.89 25.14

7 7.04 0.37 23.25 27.11 7.06 0.36 23.12 25.62

8 7.00 0.39 24.20 29.78 7.02 0.38 24.03 28.65

9 6.98 0.37 24.50 30.84 7.00 0.36 24.34 29.85

10 7.03 0.40 24.50 27.42 7.04 0.38 24.33 26.62

11 6.95 0.40 24.24 28.47 6.98 0.39 24.20 26.23

12 6.89 0.42 24.52 32.94 6.95 0.40 24.53 28.47

13 6.78 0.40 24.39 44.32 6.86 0.39 24.54 38.84

14 6.75 0.44 24.74 46.24 6.85 0.42 24.81 39.53
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model it is possible to get a higher value of acceptability

level, with a satisfactory value of risk.

In the present case study the first two locations and the

last three locations are the critical checkpoints. The first

two locations are at the downstream of point loads 1 and 2

and the streamflow is less as compared to the main Tunga–

Bhadra reach, making the checkpoints very much sensitive

to the point loads. The last three locations are critical due to

the cumulative effect of incremental flow. It is possible to

reduce the fuzzy risk of low water quality by a significant

amount by using the model at these critical locations, as

compared to FWLAM.

Table 5 shows the fractional removal levels obtained

from the combined model using goal programming and

fuzzy goal programming. The l is lowest (0.289) for fuzzy

goal programming among all the three methods, with a high

value of fractional removal level. So, the result for the

fuzzy goal programming is most conservative. The goal

Table 3 | Optimal fractional removal level obtained from combined model using fuzzy multiobjective programming

w 5 0.80 w 5 0.80 w 5 0.80 w 5 1.00 w 5 1.00 w 5 1.00 w 5 1.25 w 5 1.25 w 5 1.25

h 5 0.80 h 5 1.00 h 5 1.25 h 5 0.80 h 5 1.00 h 5 1.25 h 5 0.80 h 5 1.00 h 5 1.25

1 0.639 0.611 0.574 0.602 0.571 0.541 0.564 0.530 0.492

l 0.336 0.330 0.321 0.342 0.336 0.330 0.348 0.342 0.336

x1 0.715 0.719 0.723 0.712 0.715 0.719 0.708 0.712 0.715

x2 0.715 0.718 0.723 0.712 0.715 0.718 0.708 0.712 0.715

x3 0.681 0.683 0.717 0.707 0.681 0.683 0.684 0.707 0.681

x4 0.629 0.662 0.608 0.636 0.629 0.663 0.646 0.636 0.629

x5 0.487 0.628 0.486 0.450 0.487 0.628 0.457 0.498 0.487

x6 0.636 0.704 0.664 0.666 0.636 0.704 0.651 0.666 0.636

x7 0.644 0.623 0.705 0.690 0.644 0.623 0.536 0.690 0.644

x8 0.698 0.717 0.714 0.666 0.698 0.717 0.700 0.665 0.698

Table 4 | Fuzzy risk at different checkpoints

Location

Fuzzy risk (%) for different values of w and h

w 5 0.80 w 5 0.80 w 5 0.80 w 5 1.00 w 5 1.00 w 5 1.00 w 5 1.25 w 5 1.25 w 5 1.25

h 5 0.80 h 5 1.00 h 5 1.25 h 5 0.80 h 5 1.00 h 5 1.25 h 5 0.80 h 5 1.00 h 5 1.25

1 34.33 34.09 33.76 34.58 34.33 34.09 34.83 34.58 34.33

2 53.65 53.26 52.66 54.02 53.64 53.26 54.45 54.02 53.65

3 19.49 19.46 19.41 19.52 19.49 19.46 19.55 19.52 19.49

4 56.87 56.74 56.95 56.84 56.87 56.74 56.80 56.84 56.87

5 34.23 33.85 34.42 34.16 34.23 33.85 34.06 34.16 34.23

6 26.21 25.98 26.33 26.16 26.20 25.98 26.10 26.16 26.21

7 26.60 26.38 26.71 26.56 26.60 26.38 26.51 26.56 26.60

8 29.39 29.22 29.47 29.36 29.39 29.22 29.32 29.36 29.39

9 30.50 30.35 30.58 30.48 30.50 30.35 30.45 30.48 30.50

10 27.14 27.02 27.20 27.12 27.14 27.02 27.10 27.12 27.14

11 27.39 27.27 27.20 27.17 27.39 27.27 27.72 27.17 27.39

12 30.55 30.51 29.95 30.01 30.55 30.51 31.57 30.01 30.55

13 41.32 41.13 40.62 41.11 41.32 41.13 42.24 41.11 41.32

14 42.51 42.16 41.68 42.61 42.51 42.16 43.37 42.61 42.51
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programming gives the l value as 0.296, which lies in

between the results of fuzzy multiobjective programming

and fuzzy goal programming. Another important obser-

vation is that, compared to the goal programming tech-

nique, the fuzzy goal programming model increases the

fractional removal levels of all the dischargers to its

maximum possible value corresponding to the acceptability

level (l). So the maximum reduction of risk is possible

by using the fuzzy goal programming (Table 6). There-

fore, a general conclusion can be drawn, that an

optimistic decision-maker will use the fuzzy multiobjective

programming technique, and a pessimistic decision maker

will use fuzzy goal programming for this case study.

CONCLUSIONS

The methodologies for waste load allocation in a river

water quality control problem are presented. FWLAM is a

deterministic model; it gives the fractional removal level

only for the base flow condition and does not consider the

random nature of the input variables of the water quality

simulation model. The major advantage of MFWLAM is

that these perform uncertainty analysis, considering all the

input variables to be random. Consideration of Cheby-

shev’s inequality and skewness makes MFWLAM more

conservative and reduces the satisfaction of the dischar-

gers, which results in a low acceptability level. The

probabilistic constraints restrict the water quality in

terms of skewness and Chebyshev’s inequality with an

increase in fractional removal levels, making the model

slightly biased to the PCA. Therefore, strict probabilistic

restrictions on water quality results in a low acceptability

level, which is almost half of that of FWLAM. The

restriction is fuzzified in terms of satisfying the probabil-

istic constraints ‘as much as possible’ with minimization of

violations in the combination of FWLAM and MFWLAM

to obtain a compromised solution which will give a higher

value of acceptability level with a satisfactory value of risk.

Use of Monte Carlo simulation with a finite difference

formulation of water quality simulation, within the

optimization makes the model complex and nonlinear

and therefore it can not be solved using analytical or

gradient-based methods. Moreover, the objective function,

l, being the minimum satisfaction level of all the

stakeholders cannot be expressed analytically and is also

not differentiable. Therefore PGSL, a nonlinear search

algorithm, is applied to solve the problem. Apart from the

uncertainties due to randomness and imprecision there is

another source of uncertainty known as model uncer-

tainty, resulting from the use of multiple water quality

simulation models (e.g. Qual-2K, WASP, etc.). A limitation

of the model developed is that such model uncertainty is

not considered in the present study. Consideration of all

the sources of uncertainties in a single optimization

Table 5 | Optimal fractional removal level obtained from combined model using goal

programming and fuzzy goal programming

Goal programming Fuzzy goal programming

l 0.296 0.289

x1 0.737 0.742

x2 0.737 0.742

x3 0.666 0.723

x4 0.671 0.742

x5 0.558 0.700

x6 0.673 0.726

x7 0.479 0.742

x8 0.681 0.742

Table 6 | Fuzzy risk (%) at different checkpoints for goal programming and fuzzy goal

programming

Location Goal programming Fuzzy goal programming

1 32.76 32.40

2 51.09 50.44

3 19.28 19.23

4 56.70 56.42

5 33.70 32.92

6 25.89 25.41

7 26.31 25.87

8 29.17 28.83

9 30.30 30.01

10 26.99 26.75

11 27.79 26.51

12 31.99 28.99

13 42.80 39.52

14 44.09 40.40
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framework is a potential research area and will be a

straightforward extension of the proposed model. It should

be noted that the model is not applied to a benchmark

problem. The model is applied to a real case study of the

Tunga–Bhadra river system. FWLAM, MFWLAM and

the proposed models are applied to the case study and the

improvement of the results is presented.

Modified fuzzy waste load allocation model and the

combined model do not limit their application to any

particular pollutant or water quality parameter in the river

system. Given an appropriate transfer equation for spatial

and temporal distribution of the pollutant in a water body, the

methodologies can be used to derive the optimal fractional

removal levels. In a general sense, they are adaptable to

various environmental systems where a sustainable and

efficient use of the environment is of interest.
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